IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Digital Filters

Digital Filters
View Sample PDF
Author(s): Gordana Jovanovic Dolecek (Institute for Astrophysics, Optics and Electronics, INAOE, Mexico)
Copyright: 2009
Pages: 9
Source title: Encyclopedia of Multimedia Technology and Networking, Second Edition
Source Author(s)/Editor(s): Margherita Pagani (Bocconi University, Italy)
DOI: 10.4018/978-1-60566-014-1.ch050

Purchase

View Digital Filters on the publisher's website for pricing and purchasing information.

Abstract

A signal is defined as any physical quantity that varies with changes of one or more independent variables, and each can be any physical value, such as time, distance, position, temperature, or pressure (Elali, 2003; Smith, 2002). The independent variable is usually referred to as “time”. Examples of signals that we frequently encounter are speech, music, picture, and video signals. If the independent variable is continuous, the signal is called continuous-time signal or analog signal, and is mathematically denoted as x(t). For discrete-time signals, the independent variable is a discrete variable; therefore, a discrete-time signal is defined as a function of an independent variable n, where n is an integer. Consequently, x(n) represents a sequence of values, some of which can be zeros, for each value of integer n. The discrete–time signal is not defined at instants between integers, and it is incorrect to say that x(n) is zero at times between integers. The amplitude of both the continuous and discrete-time signals may be continuous or discrete. Digital signals are discrete-time signals for which the amplitude is discrete. Figure 1 illustrates the analog and the discrete-time signals. Most signals that we encounter are generated by natural means. However, a signal can also be generated synthetically or by computer simulation (Mitra, 2006). Signal carries information, and the objective of signal processing is to extract useful information carried by the signal. The method of information extraction depends on the type of signal and the nature of the information being carried by the signal. “Thus, roughly speaking, signal processing is concerned with the mathematical representation of the signal and algorithmic operation carried out on it to extract the information present,’’ (Mitra, 2006, pp. 1).

Related Content

Nithin Kalorth, Vidya Deshpande. © 2024. 7 pages.
Nitesh Behare, Vinayak Chandrakant Shitole, Shubhada Nitesh Behare, Shrikant Ganpatrao Waghulkar, Tabrej Mulla, Suraj Ashok Sonawane. © 2024. 24 pages.
T.S. Sujith. © 2024. 13 pages.
C. Suganya, M. Vijayakumar. © 2024. 11 pages.
B. Harry, Vijayakumar Muthusamy. © 2024. 19 pages.
Munise Hayrun Sağlam, Ibrahim Kirçova. © 2024. 19 pages.
Elif Karakoç Keskin. © 2024. 19 pages.
Body Bottom