Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Test Suite Minimization in Regression Testing Using Hybrid Approach of ACO and GA

Test Suite Minimization in Regression Testing Using Hybrid Approach of ACO and GA
View Sample PDF
Author(s): Abhishek Pandey (University of Petroleum and Energy Studies, Bidholi, India) and Soumya Banerjee (Department of Computer Science and Engineering, Birla Institute of Technology Mesra, Ranchi, India)
Copyright: 2021
Pages: 18
Source title: Research Anthology on Recent Trends, Tools, and Implications of Computer Programming
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-3016-0.ch007


View Test Suite Minimization in Regression Testing Using Hybrid Approach of ACO and GA on the publisher's website for pricing and purchasing information.


This article describes about the application of search-based techniques in regression testing and compares the performance of various search-based techniques for software testing. Test cases tend to increase exponentially as the software is modified. It is essential to remove redundant test cases from the existing test suite. Regression testing is very costly and must be performed in restricted ways to ensure the validity of the existing software. There exist different methods to improve the quality of test cases in terms of the number of faults covered, opposed to the number of statements covered in a minimum time. Different methods exist for this purpose, such as minimization, test case selection, and test case prioritization. In this article, search-based methods are applied to improve the quality of the test suite in order to select a minimum set of test cases which covers all the statements in a minimum time. The whole approach is named search based regression testing. In this paper, the performance of different metaheuristics for test suite minimization problem is also compared with a hybrid approach of ant colony optimization algorithm and genetic algorithm.

Related Content

Sangeetha V., Evangeline D., Sinthuja M.. © 2022. 16 pages.
Bhimavarapu Usharani. © 2022. 10 pages.
Rajalaxmi Prabhu B., Seema S.. © 2022. 24 pages.
Meeradevi, Monica R. Mundada, Shilpa M.. © 2022. 27 pages.
Sowmya B. J., Pradeep Kumar D., Hanumantharaju R., Gautam Mundada, Anita Kanavalli, Shreenath K. N.. © 2022. 21 pages.
Seema S., Sowmya B. J., Chandrika P., Kumutha D., Nikitha Krishna. © 2022. 20 pages.
Bhimavarapu Usharani. © 2022. 13 pages.
Body Bottom