Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Stem Cell-Based Personalized Medicine: From Disease Modeling to Clinical Applications

Stem Cell-Based Personalized Medicine: From Disease Modeling to Clinical Applications
View Sample PDF
Author(s): Alessandro Prigione (Max Planck Institute for Molecular Genetics, Germany)
Copyright: 2012
Pages: 12
Source title: Computer Engineering: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-61350-456-7.ch803


View Stem Cell-Based Personalized Medicine: From Disease Modeling to Clinical Applications on the publisher's website for pricing and purchasing information.


Regenerative medicine is a rapidly evolving research field whose main aims are to provide new therapeutic approaches and to repair or replace injured tissues with functional cells derived from stem cells. In the past few years, research breakthroughs have revolutionized the field by showing that all somatic cells have the potential to re-acquire stem cell-like properties. Thus, it appears possible to generate relevant cell types starting from cells easily obtained from affected individuals. The obtained differentiated cells could eventually serve as in vitro tools for the study of disease-associated mechanisms and for performing customized drug screenings. Moreover, in the context of cellular transplantation, these cells represent the ideal cell source given that they posses the same genetic code and thus will avoid the occurrence of unwanted immune reactions. Overall, this revolutionary technique called cellular reprogramming might provide substantial support for the future development of personalized medicine. In this chapter, I describe the recent advances in the field of stem cell-based regenerative medicine applications. Parkinson’s disease is chosen as a paradigmatic example in which the use of stem cells for study and therapy could have a relevant impact and potentially represent a future cure for this debilitating disorder.

Related Content

Sangeetha V., Evangeline D., Sinthuja M.. © 2022. 16 pages.
Bhimavarapu Usharani. © 2022. 10 pages.
Rajalaxmi Prabhu B., Seema S.. © 2022. 24 pages.
Meeradevi, Monica R. Mundada, Shilpa M.. © 2022. 27 pages.
Sowmya B. J., Pradeep Kumar D., Hanumantharaju R., Gautam Mundada, Anita Kanavalli, Shreenath K. N.. © 2022. 21 pages.
Seema S., Sowmya B. J., Chandrika P., Kumutha D., Nikitha Krishna. © 2022. 20 pages.
Bhimavarapu Usharani. © 2022. 13 pages.
Body Bottom