Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Object Oriented Software Testing with Genetic Programming and Program Analysis

Object Oriented Software Testing with Genetic Programming and Program Analysis
View Sample PDF
Author(s): Arjan Seesing (Enigmatry, Netherlands) and Hans-Gerhard Gross (Delft University of Technology, Netherlands)
Copyright: 2012
Pages: 15
Source title: Computer Engineering: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-61350-456-7.ch414


View Object Oriented Software Testing with Genetic Programming and Program Analysis on the publisher's website for pricing and purchasing information.


Testing is a difficult and costly activity in the development of object-oriented programs. The challenge is to come up with a sufficient set of test scenarios, out of the typically huge volume of possible test cases, to demonstrate correct behavior and acceptable quality of the software. This can be reformulated as a search problem to be solved by sophisticated heuristic search techniques such as evolutionary algorithms. The goal is to find an optimal set of test cases to achieve a given test coverage criterion. This chapter introduces and evaluates genetic programming as a heuristic search algorithm which is suitable to evolve object-oriented test programs automatically to achieve high coverage of a class. It outlines why the object paradigm is different to the procedural paradigm with respect to testing, and why a genetic programming approach might be better suited than the genetic algorithms typically used for testing procedural code. The evaluation of our implementation of a genetic programming approach, augmented with program analysis techniques for better performance, indicates that object-oriented software testing with genetic programming is feasible in principle. However, having many adjustable parameters, evolutionary search heuristics have to be fined-tuned to the optimization problem at hand for optimal performance, and, therefore, represent a difficult optimization problem in their own right.

Related Content

Sangeetha V., Evangeline D., Sinthuja M.. © 2022. 16 pages.
Bhimavarapu Usharani. © 2022. 10 pages.
Rajalaxmi Prabhu B., Seema S.. © 2022. 24 pages.
Meeradevi, Monica R. Mundada, Shilpa M.. © 2022. 27 pages.
Sowmya B. J., Pradeep Kumar D., Hanumantharaju R., Gautam Mundada, Anita Kanavalli, Shreenath K. N.. © 2022. 21 pages.
Seema S., Sowmya B. J., Chandrika P., Kumutha D., Nikitha Krishna. © 2022. 20 pages.
Bhimavarapu Usharani. © 2022. 13 pages.
Body Bottom