IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Fractal Coding Based Video Compression Using Weighted Finite Automata

Fractal Coding Based Video Compression Using Weighted Finite Automata
View Sample PDF
Author(s): Shailesh D. Kamble (Computer Science & Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India), Nileshsingh V. Thakur (Computer Science & Engineering, Prof Ram Meghe College of Engineering and Management, Amravati, India)and Preeti R. Bajaj (Electronics Engineering, G. H. Raisoni College of Engineering, Nagpur, India)
Copyright: 2021
Pages: 21
Source title: Research Anthology on Recent Trends, Tools, and Implications of Computer Programming
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-3016-0.ch011

Purchase

View Fractal Coding Based Video Compression Using Weighted Finite Automata on the publisher's website for pricing and purchasing information.

Abstract

Main objective of the proposed work is to develop an approach for video coding based on Fractal coding using the weighted finite automata (WFA). The proposed work only focuses on reducing the encoding time as this is the basic limitation why the Fractal coding not becomes the practical reality. WFA is used for the coding as it behaves like the Fractal Coding (FC). WFA represents an image based on the idea of fractal that the image has self-similarity in itself. The plane WFA (applied on every frame), and Plane FC (applied on every frame) coding approaches are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, Traffic, Paris, Bus, Akiyo, Mobile, Suzie etc. and on the recorded video, namely, Geometry and Circle. Developed approaches are compared on the basis of performance evaluation parameters, namely, encoding time, decoding time, compression ratio, compression percentage, bits per pixel and Peak Signal to Noise Ratio (PSNR). Though the initial number of states is 256 for every frame of all the types of videos, but we got the different number of states for different frames and it is quite obvious due to minimality of constructed WFA for respective frame. Based on the obtained results, it is observed that the number of states is more in videos namely, Traffic, Bus, Paris, Mobile, and Akiyo, therefore the reconstructed video quality is good in comparison with other videos namely, Circle, Suzie, and Geometry.

Related Content

Preethi, Sapna R., Mohammed Mujeer Ulla. © 2023. 16 pages.
Srividya P.. © 2023. 12 pages.
Preeti Sahu. © 2023. 15 pages.
Vandana Niranjan. © 2023. 23 pages.
S. Darwin, E. Fantin Irudaya Raj, M. Appadurai, M. Chithambara Thanu. © 2023. 33 pages.
Shankara Murthy H. M., Niranjana Rai, Ramakrishna N. Hegde. © 2023. 23 pages.
Jothimani K., Bhagya Jyothi K. L.. © 2023. 19 pages.
Body Bottom