IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Residual Life Estimation of Humidity Sensor DHT11 Using Artificial Neural Networks

Residual Life Estimation of Humidity Sensor DHT11 Using Artificial Neural Networks
View Sample PDF
Author(s): Pardeep Kumar Sharma (Lovely Professional University, India)and Cherry Bhargava (Lovely Professional University, India)
Copyright: 2022
Pages: 16
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch045

Purchase

View Residual Life Estimation of Humidity Sensor DHT11 Using Artificial Neural Networks on the publisher's website for pricing and purchasing information.

Abstract

Electronic systems have become an integral part of our daily lives. From toy to radar, system is dependent on electronics. The health conditions of humidity sensor need to be monitored regularly. Temperature can be taken as a quality parameter for electronics systems, which work under variable conditions. Using various environmental testing techniques, the performance of DHT11 has been analysed. The failure of humidity sensor has been detected using accelerated life testing, and an expert system is modelled using various artificial intelligence techniques (i.e., Artificial Neural Network, Fuzzy Inference System, and Adaptive Neuro-Fuzzy Inference System). A comparison has been made between the response of actual and prediction techniques, which enable us to choose the best technique on the basis of minimum error and maximum accuracy. ANFIS is proven to be the best technique with minimum error for developing intelligent models.

Related Content

Vinod Kumar, Himanshu Prajapati, Sasikala Ponnusamy. © 2023. 18 pages.
Sougatamoy Biswas. © 2023. 14 pages.
Ganga Devi S. V. S.. © 2023. 10 pages.
Gotam Singh Lalotra, Ashok Sharma, Barun Kumar Bhatti, Suresh Singh. © 2023. 15 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 16 pages.
R. Soujanya, Ravi Mohan Sharma, Manish Manish Maheshwari, Divya Prakash Shrivastava. © 2023. 12 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 22 pages.
Body Bottom