Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Graph Neural Network and Its Applications

Graph Neural Network and Its Applications
View Sample PDF
Author(s): Sougatamoy Biswas (National Institute of Technology, Rourkela, India)
Copyright: 2023
Pages: 14
Source title: Concepts and Techniques of Graph Neural Networks
Source Author(s)/Editor(s): Vinod Kumar (Koneru Lakshmaiah Education Foundation (Deemed), India)and Dharmendra Singh Rajput (VIT University, India)
DOI: 10.4018/978-1-6684-6903-3.ch002


View Graph Neural Network and Its Applications on the publisher's website for pricing and purchasing information.


Graph neural network (GNN) is an emerging field in deep learning. Graphs have more expressive power than any other data structure. Graph neural network is one of the application areas of deep learning, and it has applications in different domains where traditional convolutional neural networks can't give the desired result. Graphs are basically connections of nodes through the edges. In the area of recommendation systems, image processing and fraud detection are some of the few application areas of graph neural networks. As graphs are moveable and mobile in nature, they are more flexible to apply in these domains. GNN deals with these types of problems more effectively than a convolution neural network. To apply GNN to a specific problem domain, data needs to be converted into a graphical format, and then neural network operations can be executed. The main feature of GNN is to inherit information from its neighborhood. This is called graph embedding. This chapter describes basic GNN architecture, GNN advantage over CNN, and its application in different domains.

Related Content

Vinod Kumar, Himanshu Prajapati, Sasikala Ponnusamy. © 2023. 18 pages.
Sougatamoy Biswas. © 2023. 14 pages.
Ganga Devi S. V. S.. © 2023. 10 pages.
Gotam Singh Lalotra, Ashok Sharma, Barun Kumar Bhatti, Suresh Singh. © 2023. 15 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 16 pages.
R. Soujanya, Ravi Mohan Sharma, Manish Manish Maheshwari, Divya Prakash Shrivastava. © 2023. 12 pages.
Nimish Kumar, Himanshu Verma, Yogesh Kumar Sharma. © 2023. 22 pages.
Body Bottom