Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Qubit Neural Network: Its Performance and Applications

Qubit Neural Network: Its Performance and Applications
View Sample PDF
Author(s): Nobuyuki Matsui (University of Hyogo, Japan), Haruhiko Nishimura (University of Hyogo, Japan) and Teijiro Isokawa (University of Hyogo, Japan)
Copyright: 2009
Pages: 27
Source title: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters
Source Author(s)/Editor(s): Tohru Nitta (National Institute of Advanced Industrial Science and Technology, Japan)
DOI: 10.4018/978-1-60566-214-5.ch013


View Qubit Neural Network: Its Performance and Applications on the publisher's website for pricing and purchasing information.


Recently, quantum neural networks have been explored as one of the candidates for improving the computational efficiency of neural networks. In this chapter, after giving a brief review of quantum computing, the authors introduce our qubit neural network, which is a multi-layered neural network composed of quantum bit neurons. In this description, it is indispensable to use the complex-valued representation, which is based on the concept of quantum bit (qubit). By means of the simulations in solving the parity check problems as a bench mark examination, we show that the computational power of the qubit neural network is superior to that of the conventional complex-valued and real-valued neural networks. Furthermore, the authors explore its applications such as image processing and pattern recognition. Thus they clarify that this model outperforms the conventional neural networks.

Related Content

Arunaben Prahladbhai Gurjar, Shitalben Bhagubhai Patel. © 2022. 30 pages.
Meghna Babubhai Patel, Jagruti N. Patel, Upasana M. Bhilota. © 2022. 10 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 27 pages.
Steven Walczak. © 2022. 17 pages.
Priyanka P. Patel, Amit R. Thakkar. © 2022. 26 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 34 pages.
Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra. © 2022. 20 pages.
Body Bottom