The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
High Order Time Series Forecasting Using Fuzzy Discretization
Abstract
In recent years, various methods for forecasting fuzzy time series have been presented in different areas, such as stock price, enrollments, weather, production etc. It is observed that in most of the cases, static length of intervals/equal length of interval has been used. Length of the interval has significant role on forecasting accuracy. The objective of this present study is to incorporate the idea of fuzzy discretization into interval creation and examine the effect of positional information of elements within a group or interval to the forecast. This idea outperforms the existing high order forecast methods using fixed interval. Experiments are carried on three datasets including Lahi production data, enrollment data and rainfall data which deal with a lot of uncertainty.
Related Content
Mohammed Adi Al Battashi, Mohamad A. M. Adnan, Asyraf Isyraqi Bin Jamil, Majid Adi Al-Battashi.
© 2026.
30 pages.
|
Potchong M. Jackaria, Al-adzran G. Sali, Hana An L. Alvarado, Rashidin H. Moh. Jiripa, Al-sabrie Y. Sahijuan.
© 2026.
26 pages.
|
Elizabeth Gross.
© 2026.
30 pages.
|
Siti Nazleen Abdul Rabu, Xie Fengli, Ng Man Yi.
© 2026.
44 pages.
|
Mohammed Abdul Wajeed.
© 2026.
30 pages.
|
Aldammien A. Sukarno, Al-adzkhan N. Abdulbarie, Wati Sheena M. Bulkia, Potchong M. Jackaria.
© 2026.
24 pages.
|
Abdulla Sultan Binhareb Almheiri, Humaid Albastaki, Hanadi Alrashdan.
© 2026.
26 pages.
|
|
|