IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Fuel Reduction Effect of the Solar Cell and Diesel Engine Hybrid System with a Prediction Algorithm of Solar Power Generation

Fuel Reduction Effect of the Solar Cell and Diesel Engine Hybrid System with a Prediction Algorithm of Solar Power Generation
View Sample PDF
Author(s): Shin’ya Obara (Kitami Institute of Technology, Japan)
Copyright: 2011
Pages: 25
Source title: Green Technologies: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-472-1.ch414

Purchase


Abstract

Green energy utilization technology is an effective means of reducing greenhouse gas emissions. We developed the production-of-electricity prediction algorithm (PAS) of the solar cell. In this algorithm, a layered neural network is made to learn based on past weather data and the operation plan of the hybrid system (proposed system) of a solar cell and a diesel engine generator was examined using this prediction algorithm. In addition, system operation without a electricity-storage facility, and the system with the engine generator operating at 25% or less of battery residual quantity was investigated, and the fuel consumption of each system was measured. Numerical simulation showed that the fuel consumption of the proposed system was modest compared with other operating methods. However, there was a significant difference in the prediction error of the electricity production of the solar cell and the actual value, and the proposed system was shown to be not always superior to others. Moreover, although there are errors in the predicted and actual values using PAS, there is no significant influence in the operation plan of the proposed system in almost all cases.

Related Content

Himanshi Srivastava, Pinki Saini, Anchal Singh, Sangeeta Yadav. © 2024. 38 pages.
Rakesh Dutta, Jayashri Dutta. © 2024. 16 pages.
Sudha Subburaj, A. Lakshmi Kanthan Bharathi. © 2024. 30 pages.
Hari Shankar Biswas, Sandeep Poddar. © 2024. 15 pages.
Mihaela Rosca, Petronela Cozma, Maria Gavrilescu. © 2024. 35 pages.
Indranee Changmai. © 2024. 28 pages.
Periasamy Palanisamy, M. Kumaresan, M. Maheswaran. © 2024. 19 pages.
Body Bottom