IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Envisioning the Paradigm of Service Oriented Hydrology Intelligence (SOHI)

Envisioning the Paradigm of Service Oriented Hydrology Intelligence (SOHI)
View Sample PDF
Author(s): Pethuru Raj Chelliah (Robert Bosch India, India)
Copyright: 2011
Pages: 27
Source title: Green Technologies: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-472-1.ch706

Purchase

View Envisioning the Paradigm of Service Oriented Hydrology Intelligence (SOHI) on the publisher's website for pricing and purchasing information.

Abstract

Hydrology is an increasingly data-intensive discipline and the key contribution of existing and emerging information technologies for the hydrology ecosystem is to smartly transform the water-specific data to information and to knowledge that can be easily picked up and used by various stakeholders and automated decision engines in order to forecast and forewarn the things to unfold. Attaining actionable and realistic insights in real-time dynamically out of both flowing as well as persisting data mountain is the primary goal for the aquatic industry. There are several promising technologies, processes, and products for facilitating this grand yet challenging objective. Business intelligence (BI) is the mainstream IT discipline representing a staggering variety of data transformation and synchronization, information extraction and knowledge engineering techniques. Another paradigm shift is the overwhelming adoption of service oriented architecture (SOA), which is a simplifying mechanism for effectively designing complex and mission-critical enterprise systems. Incidentally there is a cool convergence between the BI and SOA concepts. This is the stimulating foundation for the influential emergence of service oriented business intelligence (SOBI) paradigm, which is aptly recognized as the next-generation BI method. These improvisations deriving out of technological convergence and cluster calmly pervade to the ever-shining water industry too. That is, the bubbling synergy between service orientation and aquatic intelligence empowers the aquatic ecosystem significantly in extracting actionable insights from distributed and diverse data sources in real time through a host of robust and resilient infrastructures and practices. The realisable inputs and information being drawn from water-related data heap contribute enormously in achieving more with less and to guarantee enhanced safety and security for total human society. Especially as the green movement is taking shape across the globe, there is a definite push from different quarters on water and ecology professionals to contribute their mite immensely and immediately in permanently arresting the ecological degradation. In this chapter, we have set the context by incorporating some case studies that detail how SOA has been a tangible enabler of hydroinformatics. Further down, we have proceeded by explaining how SOA-sponsored integration concepts contribute towards integrating different data for creating unified and synchronized views and to put the solid and stimulating base for quickly deriving incisive and decisive insights in the form of hidden patterns, predictions, trends, associations, tips, etc. from the integrated and composite data. This enables real-time planning of appropriate countermeasures, tactics as well as strategies to put the derived in faster activation and actuation modes. Finally the idea is to close this chapter with an overview of how SOA celebrates in establishing adaptive, on-demand and versatile SOHI platforms. SOA is insisted as the chief technique for developing and deploying agile, adaptive, and on-demand hydrology intelligence platforms as a collection of interoperable, reusable, composable, and granular hydrology and technical services. The final section illustrates the reference architecture for the proposed SOHI platform.

Related Content

Himanshi Srivastava, Pinki Saini, Anchal Singh, Sangeeta Yadav. © 2024. 38 pages.
Rakesh Dutta, Jayashri Dutta. © 2024. 16 pages.
Sudha Subburaj, A. Lakshmi Kanthan Bharathi. © 2024. 30 pages.
Hari Shankar Biswas, Sandeep Poddar. © 2024. 15 pages.
Mihaela Rosca, Petronela Cozma, Maria Gavrilescu. © 2024. 35 pages.
Indranee Changmai. © 2024. 28 pages.
Periasamy Palanisamy, M. Kumaresan, M. Maheswaran. © 2024. 19 pages.
Body Bottom