IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Artificial Life-Based Vegetation Modelling Approach for Biodiversity Research

An Artificial Life-Based Vegetation Modelling Approach for Biodiversity Research
View Sample PDF
Author(s): Eugene Ch’ng (University of Wolverhampton, UK)
Copyright: 2011
Pages: 48
Source title: Green Technologies: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-472-1.ch305

Purchase

View An Artificial Life-Based Vegetation Modelling Approach for Biodiversity Research on the publisher's website for pricing and purchasing information.

Abstract

The complexity of nature can only be solved by nature’s intrinsic problem-solving approach. Therefore, the computational modelling of nature requires careful observations of its underlying principles in order that these laws can be abstracted into formulas suitable for the algorithmic configuration. This chapter proposes a novel modelling approach for biodiversity informatics research. The approach is based on the emergence phenomenon for predicting vegetation distribution patterns in a multi-variable ecosystem where Artificial Life-based vegetation grow, compete, adapt, reproduce and conquer plots of landscape in order to survive their generation. The feasibility of the modelling approach presented in this chapter may provide a firm foundation not only for predicting vegetation distribution in a wide variety of landscapes, but could also be extended for studying biodiversity and the loss of animal species for sustainable management of resources.

Related Content

Himanshi Srivastava, Pinki Saini, Anchal Singh, Sangeeta Yadav. © 2024. 38 pages.
Rakesh Dutta, Jayashri Dutta. © 2024. 16 pages.
Sudha Subburaj, A. Lakshmi Kanthan Bharathi. © 2024. 30 pages.
Hari Shankar Biswas, Sandeep Poddar. © 2024. 15 pages.
Mihaela Rosca, Petronela Cozma, Maria Gavrilescu. © 2024. 35 pages.
Indranee Changmai. © 2024. 28 pages.
Periasamy Palanisamy, M. Kumaresan, M. Maheswaran. © 2024. 19 pages.
Body Bottom