IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Efficient Time Series Forecasting Method Exploiting Fuzziness and Turbulences in Data

An Efficient Time Series Forecasting Method Exploiting Fuzziness and Turbulences in Data
View Sample PDF
Author(s): Prateek Pandey (Jaypee University of Engineering and Technology, India), Shishir Kumar (Jaypee University of Engineering and Technology, India)and Sandeep Shrivastava (Jaypee University of Engineering and Technology, India)
Copyright: 2018
Pages: 19
Source title: Intelligent Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5643-5.ch078

Purchase

View An Efficient Time Series Forecasting Method Exploiting Fuzziness and Turbulences in Data on the publisher's website for pricing and purchasing information.

Abstract

In recent years, there has been a growing interest in Time Series forecasting. A number of time series forecasting methods have been proposed by various researchers. However, a common trend found in these methods is that they all underperform on a data set that exhibit uneven ups and downs (turbulences). In this paper, a new method based on fuzzy time-series (henceforth FTS) to forecast on the fundament of turbulences in the data set is proposed. The results show that the turbulence based fuzzy time series forecasting is effective, especially, when the available data indicate a high degree of instability. A few benchmark FTS methods are identified from the literature, their limitations and gaps are discussed and it is observed that the proposed method successfully overcome their deficiencies to produce better results. In order to validate the proposed model, a performance comparison with various conventional time series models is also presented.

Related Content

Mohammed Adi Al Battashi, Mohamad A. M. Adnan, Asyraf Isyraqi Bin Jamil, Majid Adi Al-Battashi. © 2026. 30 pages.
Potchong M. Jackaria, Al-adzran G. Sali, Hana An L. Alvarado, Rashidin H. Moh. Jiripa, Al-sabrie Y. Sahijuan. © 2026. 26 pages.
Elizabeth Gross. © 2026. 30 pages.
Siti Nazleen Abdul Rabu, Xie Fengli, Ng Man Yi. © 2026. 44 pages.
Mohammed Abdul Wajeed. © 2026. 30 pages.
Aldammien A. Sukarno, Al-adzkhan N. Abdulbarie, Wati Sheena M. Bulkia, Potchong M. Jackaria. © 2026. 24 pages.
Abdulla Sultan Binhareb Almheiri, Humaid Albastaki, Hanadi Alrashdan. © 2026. 26 pages.
Body Bottom