The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
An Efficient Method for Forecasting Using Fuzzy Time Series
Abstract
Forecasting using fuzzy time series has been applied in several areas including forecasting university enrollments, sales, road accidents, financial forecasting, weather forecasting, etc. Recently, many researchers have paid attention to apply fuzzy time series in time series forecasting problems. In this paper, we present a new model to forecast the enrollments in the University of Alabama and the daily average temperature in Taipei, based on one-factor fuzzy time series. In this model, a new frequency based clustering technique is employed for partitioning the time series data sets into different intervals. For defuzzification function, two new principles are also incorporated in this model. In case of enrollments as well daily temperature forecasting, proposed model exhibits very small error rate.
Related Content
Mohammed Adi Al Battashi, Mohamad A. M. Adnan, Asyraf Isyraqi Bin Jamil, Majid Adi Al-Battashi.
© 2026.
30 pages.
|
Potchong M. Jackaria, Al-adzran G. Sali, Hana An L. Alvarado, Rashidin H. Moh. Jiripa, Al-sabrie Y. Sahijuan.
© 2026.
26 pages.
|
Elizabeth Gross.
© 2026.
30 pages.
|
Siti Nazleen Abdul Rabu, Xie Fengli, Ng Man Yi.
© 2026.
44 pages.
|
Mohammed Abdul Wajeed.
© 2026.
30 pages.
|
Aldammien A. Sukarno, Al-adzkhan N. Abdulbarie, Wati Sheena M. Bulkia, Potchong M. Jackaria.
© 2026.
24 pages.
|
Abdulla Sultan Binhareb Almheiri, Humaid Albastaki, Hanadi Alrashdan.
© 2026.
26 pages.
|
|
|