IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Comprehensive Workflow for Enhancing Business Bankruptcy Prediction

A Comprehensive Workflow for Enhancing Business Bankruptcy Prediction
View Sample PDF
Author(s): Rui Sarmento (LIAAD-INESC TEC, Portugal), Luís Trigo (LIAAD-INESC TEC, Portugal)and Liliana Fonseca (University of Porto, Portugal)
Copyright: 2018
Pages: 26
Source title: Intelligent Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5643-5.ch095

Purchase

View A Comprehensive Workflow for Enhancing Business Bankruptcy Prediction on the publisher's website for pricing and purchasing information.

Abstract

Forecasting enterprise bankruptcy is a critical area for Business Intelligence. It is a major concern for investors and credit institutions on risk analysis. It may also enable the sustainability assessment of critical suppliers and clients, as well as competitors and the business environment. Data Mining may deliver a faster and more precise insight about this issue. Widespread software tools offer a broad spectrum of Artificial Intelligence algorithms and the most difficult task may be the decision of selecting that algorithm. Trying to find an answer for this decision in the relatively large amount of available literature in this area with so many options, advantages, and pitfalls may be as informative as distracting. In this chapter, the authors present an empirical study with a comprehensive Knowledge Discovery and Data Mining (KDD) workflow. The proposed classifier selection automation selects an algorithm that has better prediction performance than the most widely documented in the literature.

Related Content

Mohammed Adi Al Battashi, Mohamad A. M. Adnan, Asyraf Isyraqi Bin Jamil, Majid Adi Al-Battashi. © 2026. 30 pages.
Potchong M. Jackaria, Al-adzran G. Sali, Hana An L. Alvarado, Rashidin H. Moh. Jiripa, Al-sabrie Y. Sahijuan. © 2026. 26 pages.
Elizabeth Gross. © 2026. 30 pages.
Siti Nazleen Abdul Rabu, Xie Fengli, Ng Man Yi. © 2026. 44 pages.
Mohammed Abdul Wajeed. © 2026. 30 pages.
Aldammien A. Sukarno, Al-adzkhan N. Abdulbarie, Wati Sheena M. Bulkia, Potchong M. Jackaria. © 2026. 24 pages.
Abdulla Sultan Binhareb Almheiri, Humaid Albastaki, Hanadi Alrashdan. © 2026. 26 pages.
Body Bottom