Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

The Use of Artificial Intelligence Systems for Support of Medical Decision-Making

The Use of Artificial Intelligence Systems for Support of Medical Decision-Making
View Sample PDF
Author(s): William Claster (Ritsumeikan Asia Pacific University, Japan), Nader Ghotbi (Ritsumeikan Asia Pacific University, Japan) and Subana Shanmuganathan (Auckland University of Technology, New Zealand)
Copyright: 2011
Pages: 13
Source title: Clinical Technologies: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-561-2.ch402


View The Use of Artificial Intelligence Systems for Support of Medical Decision-Making on the publisher's website for pricing and purchasing information.


There is a treasure trove of hidden information in the textual and narrative data of medical records that can be deciphered by text-mining techniques. The information provided by these methods can provide a basis for medical artificial intelligence and help support or improve clinical decision making by medical doctors. In this paper we extend previous work in an effort to extract meaningful information from free text medical records. We discuss a methodology for the analysis of medical records using some statistical analysis and the Kohonen Self-Organizing Map (SOM). The medical data derive from about 700 pediatric patients’ radiology department records where CT (Computed Tomography) scanning was used as part of a diagnostic exploration. The patients underwent CT scanning (single and multiple) throughout a one-year period in 2004 at the Nagasaki University Medical Hospital. Our approach led to a model based on SOM clusters and statistical analysis which may suggest a strategy for limiting CT scan requests. This is important because radiation at levels ordinarily used for CT scanning may pose significant health risks especially to children.

Related Content

Julia Zimmer, Elisa Degenkolbe, Britt Wildemann, Petra Seemann. © 2013. 30 pages.
George I. Lambrou, Maria Adamaki, Apostolos Zaravinos. © 2013. 22 pages.
Svetoslav Nikolov, Mukhtar Ullah, Momchil Nenov, Julio Vera Gonzalez, Peter Raasch, Olaf Wolkenhauer. © 2013. 23 pages.
Ana M. Sotoca, Michael Weber, Everardus J. J. van Zoelen. © 2013. 19 pages.
Franz Ricklefs, Sonja Schrepfer. © 2013. 16 pages.
Sonja Schallenberg, Cathleen Petzold, Julia Riewaldt, Karsten Kretschmer. © 2013. 25 pages.
Ali Mobasheri. © 2013. 32 pages.
Body Bottom