The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Type-2 Fuzzy Sliding Mode Synchronization
Abstract
This chapter presents an adaptive interval type-2 fuzzy neural network (FNN) controller to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances. Adaptive interval type-2 FNN control scheme and sliding mode approach are incorporated to deal with the synchronization of non-identical chaotic systems. In the meantime, based on the adaptive fuzzy sliding mode control, the Laypunov stability theorem has been used to testify the asymptotic stability of the chaotic systems. The chattering phenomena in the control efforts can be reduced and the stability analysis of the proposed control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded and the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and performance of the advocated design methodology.
Related Content
Chirag Sharma, Amanpreet Kaur, Priyanka Datta, Yonis Gulzar.
© 2025.
30 pages.
|
M. Johnpaul, Raam Sai Bharadwaj Miryala, Marica Mazurek, G. Jayaprakashnarayana, Ramesh Kumar Miryala.
© 2025.
28 pages.
|
Jatin Arora, Gaganpreet Kaur, Monika Sethi, Saravjeet Singh.
© 2025.
20 pages.
|
L. A. Anto Gracious, L. Sudha, B. Chitra, Gaganpreet Kaur, V. Sathya, P. Kabitha, R. Siva Subramanian.
© 2025.
28 pages.
|
Bhavik Singla, Anuj Kumar Jain, Gaganpreet Kaur, Nitin Jain, Vishal Jain.
© 2025.
28 pages.
|
P. Vijayalakshmi, K. Subashini, B. Selvalakshmi, G. Sudhakar, Anand Anbalagan, N. Bharathiraja, Gaganpreet Kaur.
© 2025.
22 pages.
|
Djamel Saba, Abdelkader Hadidi.
© 2025.
28 pages.
|
|
|