The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Test Suite Optimization Using Firefly and Genetic Algorithm
Abstract
Software testing is essential for providing error-free software. It is a well-known fact that software testing is responsible for at least 50% of the total development cost. Therefore, it is necessary to automate and optimize the testing processes. Search-based software engineering is a discipline mainly focussed on automation and optimization of various software engineering processes including software testing. In this article, a novel approach of hybrid firefly and a genetic algorithm is applied for test data generation and selection in regression testing environment. A case study is used along with an empirical evaluation for the proposed approach. Results show that the hybrid approach performs well on various parameters that have been selected in the experiments.
Related Content
Subhadip Kowar, Sneha Mukherjee, Shramana Ghosh.
© 2025.
26 pages.
|
C. V. Suresh Babu, Mala Raja Sekhar, A. Sachin, Bala Brindha.
© 2025.
26 pages.
|
A. D. N. Sarma.
© 2025.
32 pages.
|
Muhammad Usman Tariq.
© 2025.
26 pages.
|
Maaike Stoops, Pablo Alfonso Aguilar Calderón, Óscar Manuel Peña Bañuelos.
© 2025.
30 pages.
|
Pablo Alfonso Aguilar Calderón, José Alfonso Aguilar-Calderón, Dominik Morales-Silva, Carolina Tripp-Barba, Pedro Alfonso Aguilar-Calderón, Aníbal Zaldívar-Colado, Oscar Manuel Peña-Bañuelos.
© 2025.
30 pages.
|
Carlos Villarrubia, David Granada, Juan Manuel Vara.
© 2025.
34 pages.
|
|
|