IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Support Vector Machines and Applications

Support Vector Machines and Applications
View Sample PDF
Author(s): Vandana M. Ladwani (PESIT-BSC, India)
Copyright: 2018
Pages: 10
Source title: Computer Vision: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5204-8.ch057

Purchase

View Support Vector Machines and Applications on the publisher's website for pricing and purchasing information.

Abstract

Support Vector Machines is one of the powerful Machine learning algorithms used for numerous applications. Support Vector Machines generate decision boundary between two classes which is characterized by special subset of the training data called as Support Vectors. The advantage of support vector machine over perceptron is that it generates a unique decision boundary with maximum margin. Kernalized version makes it very faster to learn as the data transformation is implicit. Object recognition using multiclass SVM is discussed in the chapter. The experiment uses histogram of visual words and multiclass SVM for image classification.

Related Content

Jayashri Dutta, Smitakshi Medhi, Mayurakshi Gogoi, Lisha Borgohain, Nourhan Gamal Abdel Maboud, Hanaa Mustafa Muhameed. © 2025. 34 pages.
Abdellah Khouz, Jorge Trindade, Fatima El Bchari, Pedro Pinto Santos, Eusébio Reis, Adil Moumane, Fatima Ezzahra El Ghazali, Mourad Jadoud, Blaid Bougadir. © 2025. 38 pages.
Phyo Thandar Hlaing, Muhammad Waqas, Usa Wannasingha Humphries. © 2025. 32 pages.
Adil Moumane, Jamal Al Karkouri, Batchi Mouhcine. © 2025. 28 pages.
Abdessamad Elmotawakkil, Nourddine Enneya. © 2025. 20 pages.
Fatima Ezzahra El Ghazali, Abdellah Khouz. © 2025. 30 pages.
Tarik Bahouq, Amina Moumane, Nadia Touhami. © 2025. 28 pages.
Body Bottom