IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Shape Control of Robot Swarms with Multilevel-Based Topology Design

Shape Control of Robot Swarms with Multilevel-Based Topology Design
View Sample PDF
Author(s): Xiao Yan (City University of Hong Kong, China)and Dong Sun (City University of Hong Kong, China)
Copyright: 2017
Pages: 33
Source title: Artificial Intelligence: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-1759-7.ch023

Purchase

View Shape Control of Robot Swarms with Multilevel-Based Topology Design on the publisher's website for pricing and purchasing information.

Abstract

Significant attentions have been drawn to the cooperative control of robot swarms from researchers all over the world during the past decade. This chapter mainly focuses on the shape control problem of a group of homogeneous mobile robots moving into a desired region. A novel topology design of the robot group is proposed with a multilevel-based structure, which can be utilized to construct different shapes for the robot group within the desired region. A controller employing several potential forces is developed to control the robots in forming the desired formation shape while avoiding collisions during their movements. The local minima problem which may cause the robots stuck at undesired positions is further addressed with a novel shape regulation control force. The stability of the controlled system is analyzed using a Lyapunov approach. Simulations and experiments are demonstrated to show the effectiveness of the proposed approach.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom