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ABSTRACT

Significant attentions have been drawn to the cooperative control of robot swarms from researchers 
all over the world during the past decade. This chapter mainly focuses on the shape control problem 
of a group of homogeneous mobile robots moving into a desired region. A novel topology design of the 
robot group is proposed with a multilevel-based structure, which can be utilized to construct different 
shapes for the robot group within the desired region. A controller employing several potential forces is 
developed to control the robots in forming the desired formation shape while avoiding collisions during 
their movements. The local minima problem which may cause the robots stuck at undesired positions 
is further addressed with a novel shape regulation control force. The stability of the controlled system 
is analyzed using a Lyapunov approach. Simulations and experiments are demonstrated to show the 
effectiveness of the proposed approach.

INTRODUCTION

Swarming behavior can be observed in nature in many organisms ranging from simple bacteria to 
mammals. For example, individuals may respond directly to local physical cues such as concentration 
of nutrients or distribution of some chemicals, which may be laid by other individuals. This process is 
called chemotaxis, which is used by organisms such as bacteria or social insects (e.g., by ants in trail 
following or by honey bees in cluster formation). Swarming behavior is driven by various advantages 
of such collective and coordinated behavior for avoiding predators and increasing the probability of 
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finding food. Inspired by this, a large number of robots are usually deployed for task accomplishment 
in the form of multirobot systems. Typical swarming behaviors of robots include but are not limited to 
aggregation, flocking, task allocation, and pattern formation. In addition, robots moving in specific geo-
metrical formations are believed to be capable of reducing system costs and increasing system robustness 
and efficiency while providing redundancy, reconfiguration capability, and structural flexibility (Chen 
et al., 2005). In all these problems, the robots must be able to organize and generate complex shapes, 
often maintaining constraints with respect to neighbors for communication.

Extensive studies have been recently conducted for the shape control of multirobot systems, includ-
ing leader-follower (Chen et al., 2010; Consolini et al., 2008; Das et al., 2002; Desai et al., 2001; Gu & 
Wang, 2009; Huang et al., 2006), behavior-based (Balch & Arkin, 1998; Marino et al., 2009), and virtual 
structure methods (Egerstedt & Hu, 2001; Ren & Beard, 2004), among others. In the leader-follower 
method, some robots are designated as leaders with predefined trajectories, and the followers generally 
need to maintain a desired distance and orientation with respect to their respective leaders. Though this 
method is easy to analyze, an obvious disadvantage is that the failure of the leader may lead to the fail-
ure of the whole system. For the behavior-based approach, a set of desired behaviors is employed onto 
individual robots. By defining various weightings on different behaviors, the overall performance of 
a system can be achieved by averaging the overall weightings. However, the overall system is difficult 
to be analyzed mathematically and it is also impossible to show the convergence to a desired shape/
formation. In the virtual structure method, the entire formation is considered as a single entity and the 
desired motion for each robot is assigned according to the structure, which must be rigidly maintained 
during the movement. The drawbacks for the virtual structure method mainly lie in the difficulties of 
formation changing and obstacle avoidance. Other formation approaches have also been reported in the 
recent literature.

A synchronization approach was proposed to trajectory tracking of multiple mobile robots while 
maintaining time-varying formations (Sun et al., 2009). Each robot was controlled to track its desired 
trajectory while synchronizing its motion with other robots to keep relative kinematics relationships, 
which can converge both position and synchronization errors to zero asymptotically. A graph theory-
based method was used to model the communication network and eigenvalues of the graph Laplacian 
matrix were employed to determine the effect of the communication topology on formation stability 
(Fax & Murray, 2004). Path planning problems were considered for multirobot formations to generate 
collision-free paths (Kloder & Hutchinson, 2006; Liu et al., 2011). However, most of these approaches 
were not specifically designed for shape control of large-scale robot groups.

The potential field-based approach has been considerably used for controlling a large group of robots 
because of its advantage in controlling the robot swarms such that individuals stay together as a whole 
without collision. Artificial potential functions and the sliding-mode control techniques were used for 
multiagent coordination and control (Gazi, 2005). A theoretical framework was presented for design 
and analysis of distributed flocking algorithms (Olfati-Saber, 2006), and the cases of free-flocking and 
flocking with obstacle avoidance were both addressed. However, the potential field-based method has 
difficulty in driving the robot swarms to form specific desired shapes, and selecting potentials to achieve 
global convergence is also difficult.

When handling a large number of robots, the idea of initially controlling robot swarms into a desired 
region and then forming the desired shapes subsequently can be feasibly realized. For example, implicit 
functions were used to generate specific curve and the robot swarms were controlled to spread along the 
desired curve (Chaimowicz et al., 2005). To have a high degree of control over the desired 2D curves, the 
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