The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Recognizing Human Actions in Basketball Video Sequences on the Basis of Global and Local Pairwise Representation
Abstract
A feature-representation method for recognizing actions in sports videos on the basis of the relationship between human actions and camera motions is proposed. The method involves the following steps: First, keypoint trajectories are extracted as motion features in spatio-temporal sub-regions called “spatio-temporal multiscale bags” (STMBs). Global representations and local representations from one sub-region in the STMBs are then combined to create a “glocal pairwise representation” (GPR). The GPR considers the co-occurrence of camera motions and human actions. Finally, two-stage SVM classifiers are trained with STMB-based GPRs, and specified human actions in video sequences are identified. An experimental evaluation of the recognition accuracy of the proposed method (by using the public OSUPEL basketball video dataset and broadcast videos) demonstrated that the method can robustly detect specific human actions in both public and broadcast basketball video sequences.
Related Content
Jayashri Dutta, Smitakshi Medhi, Mayurakshi Gogoi, Lisha Borgohain, Nourhan Gamal Abdel Maboud, Hanaa Mustafa Muhameed.
© 2025.
34 pages.
|
Abdellah Khouz, Jorge Trindade, Fatima El Bchari, Pedro Pinto Santos, Eusébio Reis, Adil Moumane, Fatima Ezzahra El Ghazali, Mourad Jadoud, Blaid Bougadir.
© 2025.
38 pages.
|
Phyo Thandar Hlaing, Muhammad Waqas, Usa Wannasingha Humphries.
© 2025.
32 pages.
|
Adil Moumane, Jamal Al Karkouri, Batchi Mouhcine.
© 2025.
28 pages.
|
Abdessamad Elmotawakkil, Nourddine Enneya.
© 2025.
20 pages.
|
Fatima Ezzahra El Ghazali, Abdellah Khouz.
© 2025.
30 pages.
|
Tarik Bahouq, Amina Moumane, Nadia Touhami.
© 2025.
28 pages.
|
|
|