IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Prototype Based Classification in Bioinformatics

Prototype Based Classification in Bioinformatics
View Sample PDF
Author(s): Frank-M. Schleif (University of Leipzig, Germany), Thomas Villmann (University of Leipzig, Germany)and Barbara Hammer (Technical University of Clausthal, Germany)
Copyright: 2011
Pages: 8
Source title: Clinical Technologies: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-60960-561-2.ch217

Purchase

View Prototype Based Classification in Bioinformatics on the publisher's website for pricing and purchasing information.

Abstract

Bioinformatics has become an important tool to support clinical and biological research and the analysis of functional data, is a common task in bioinformatics (Schleif, 2006). Gene analysis in form of micro array analysis (Schena, 1995) and protein analysis (Twyman, 2004) are the most important fields leading to multiple sub omics-disciplines like pharmacogenomics, glycoproteomics or metabolomics. Measurements of such studies are high dimensional functional data with few samples for specific problems (Pusch, 2005). This leads to new challenges in the data analysis. Spectra of mass spectrometric measurements are such functional data requiring an appropriate analysis (Schleif, 2006). Here we focus on the determination of classification models for such data. In general, the spectra are transformed into a vector space followed by training a classifier (Haykin, 1999). Hereby the functional nature of the data is typically lost. We present a method which takes this specific data aspects into account. A wavelet encoding (Mallat, 1999) is applied onto the spectral data leading to a compact functional representation. Subsequently the Supervised Neural Gas classifier (Hammer, 2005) is applied, capable to handle functional metrics as introduced by Lee & Verleysen (Lee, 2005). This allows the classifier to utilize the functional nature of the data in the modelling process. The presented method is applied to clinical proteome data showing good results and can be used as a bioinformatics method for biomarker discovery.

Related Content

Nadia Ouzennou, Mohamed Aboufaras. © 2025. 8 pages.
Imane Barakat, Khalid Barkat, Ikram Baha, Hind Boujguenna, Asma Chaoui, Keltoum Boutahar. © 2025. 28 pages.
Rquia Laabidi, Mounia Amane, Saloua Lamtali, Samia Boussaa, Latifa Adarmouch. © 2025. 14 pages.
Nawal Elansari, Rabab Loufsahi, Fatima Zahra Ghanimi, Samia Boussaa, Mounia Amane. © 2025. 24 pages.
Mohammed El Rhanbouri, Mounia Amane, Abdelhafid Benksim, Abdelati Oussous. © 2025. 44 pages.
Amina El Fahli, Mounia Amane, Samia Boussaa, Saloua Lamtali. © 2025. 26 pages.
El Mahjoub El Harsi, Abdelhafid Benksim, Fatima Ezzahra Kasmaoui, Said Bouthir, Mohamed Cherkaoui. © 2025. 28 pages.
Body Bottom