The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Prediction of Breast Cancer Recurrence With Machine Learning
Abstract
Medical prognostication is the science of estimating the complication and recurrence of a disease. A Breast cancer recurrence (BCR) event is characterized by the cancer “coming back” after at least a year of remission after the treatment. Many factors, including tumor grade, tumor size, and lymph node status may influence or correlate with prognosis for breast cancer patients. Early detection of recurrence events (i.e., while still asymptomatic) is more likely to be curable than after the cancer symptoms are seen again. Machine learning techniques can help to provide some necessary information and knowledge required by physicians for accurate predictions of BCR and better decision-making. The aim of this chapter is to use machine learning classifiers to examine the factors that are most predictive of the BCR. Several attributes/features selection schemes have been used to find the most significant features contributing to BCR. Five different machine learning algorithms were tested and compared for the prediction of BCR. The decision tree was found to be the best model for the dataset.
Related Content
Christian Rainero, Giuseppe Modarelli.
© 2025.
26 pages.
|
Beatriz Maria Simões Ramos da Silva, Vicente Aguilar Nepomuceno de Oliveira, Jorge Magalhães.
© 2025.
21 pages.
|
Ann Armstrong, Albert J. Gale.
© 2025.
19 pages.
|
Zhi Quan, Yueyi Zhang.
© 2025.
21 pages.
|
Sanaz Adibian.
© 2025.
19 pages.
|
Le Ngoc Quang, Kulthida Tuamsuk.
© 2025.
21 pages.
|
Jorge Lima de Magalhães, Carla Cristina de Freitas da Silveira, Tatiana Aragão Figueiredo, Felipe Gilio Guzzo.
© 2025.
17 pages.
|
|
|