IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Prediction Approach Based on Self-Training and Deep Learning for Biological Data

A Prediction Approach Based on Self-Training and Deep Learning for Biological Data
View Sample PDF
Author(s): Mohamed Nadjib Boufenara (LIRE Laboratory, Abdelhamid MEHRI, Constantine 2 University, Algeria), Mahmoud Boufaida (LIRE Laboratory, Abdelhamid MEHRI, Constantine 2 University, Algeria)and Mohamed Lamine Berkane (LIRE Laboratory, Abdelhamid MEHRI, Constantine 2 University, Algeria)
Copyright: 2024
Pages: 16
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch005

Purchase

View A Prediction Approach Based on Self-Training and Deep Learning for Biological Data on the publisher's website for pricing and purchasing information.

Abstract

With the exponential growth of biological data, labeling this kind of data becomes difficult and costly. Although unlabeled data are comparatively more plentiful than labeled ones, most supervised learning methods are not designed to use unlabeled data. Semi-supervised learning methods are motivated by the availability of large unlabeled datasets rather than a small amount of labeled examples. However, incorporating unlabeled data into learning does not guarantee an improvement in classification performance. This paper introduces an approach based on a model of semi-supervised learning, which is the self-training with a deep learning algorithm to predict missing classes from labeled and unlabeled data. In order to assess the performance of the proposed approach, two datasets are used with four performance measures: precision, recall, F-measure, and area under the ROC curve (AUC).

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom