The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
A New Topology for Artificial Higher Order Neural Networks: Polynomial Kernel Networks
Abstract
Aiming to develop a systematic approach for optimizing the structure of artificial higher order neural networks (HONN) for system modeling and function approximation, a new HONN topology, namely polynomial kernel networks, is proposed in this chapter. Structurally, the polynomial kernel network can be viewed as a three-layer feedforward neural network with a special polynomial activation function for the nodes in the hidden layer. The new network is equivalent to a HONN; however, due to the underlying connections with polynomial kernel support vector machines, the weights and the structure of the network can be determined simultaneously using structural risk minimization. The advantage of the topology of the polynomial kernel network and the use of a support vector kernel expansion paves the way to represent nonlinear functions or systems, and underpins some advanced analysis of the network performance. In this chapter, from the perspective of network complexity, both quadratic programming and linear programming based training of the polynomial kernel network are investigated.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|