IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Neural/Fuzzy Computing Based on Lattice Theory

Neural/Fuzzy Computing Based on Lattice Theory
View Sample PDF
Author(s): Vassilis G. Kaburlasos (Technological Educational Institution of Kavala, Greece)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch181

Purchase

View Neural/Fuzzy Computing Based on Lattice Theory on the publisher's website for pricing and purchasing information.

Abstract

Computational Intelligence (CI) consists of an evolving collection of methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks and fuzzy systems. Lately, a unification was proposed in CI, at a “data level”, based on lattice theory (Kaburlasos, 2006). More specifically, it was shown that several types of data including vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was proposed for knowledge representation and modeling based on lattice theory with emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). Of particular interest in practice is the totally-ordered lattice (R,=) of real numbers, which has emerged historically from the conventional measurement process of successive comparisons. It is known that (R,=) gives rise to a hierarchy of lattices including the lattice (F,=) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map (Kohonen, 1995), as well as an extension of conventional fuzzy inference systems (Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned extensions include both a capacity to rigorously deal with nonnumeric input data and a capacity to introduce tunable nonlinearities. Rule induction is yet another advantage.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom