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INTRODUCTION

Computational Intelligence (CI) consists of an evolving 
collection of methodologies often inspired from nature 
(Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 
1999, Pedrycz, 1998). Two popular methodologies of 
CI include neural networks and fuzzy systems.

Lately, a unification was proposed in CI, at a “data 
level”, based on lattice theory (Kaburlasos, 2006). 
More specifically, it was shown that several types of 
data including vectors of (fuzzy) numbers, (fuzzy) sets, 
1D/2D (real) functions, graphs/trees, (strings of) sym-
bols, etc. are partially(lattice)-ordered. In conclusion, a 
unified cross-fertilization was proposed for knowledge 
representation and modeling based on lattice theory with 
emphasis on clustering, classification, and regression 
applications (Kaburlasos, 2006).

Of particular interest in practice is the totally-ordered 
lattice (R,≤) of real numbers, which has emerged his-
torically from the conventional measurement process 
of successive comparisons. It is known that (R,≤) gives 
rise to a hierarchy of lattices including the lattice (F,≤) 
of fuzzy interval numbers, or FINs for short (Papadakis 
& Kaburlasos, 2007).

This article shows extensions of two popular neural 
networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, 
Markuzon, Reynolds & Rosen 1992) and self-organ-
izing map (Kohonen, 1995), as well as an extension 
of conventional fuzzy inference systems (Mamdani & 
Assilian, 1975), based on FINs. Advantages of the 
aforementioned extensions include both a capacity to 
rigorously deal with nonnumeric input data and a capac-
ity to introduce tunable nonlinearities. Rule induction 
is yet another advantage.

BACKGROUND

Lattice theory has been compiled by Birkhoff (Birkhoff, 
1967). This section summarizes selected results regard-

ing a Cartesian product lattice (L,≤)= (L1,≤1)×…×(LN,≤N) 
of constituent lattices (Li,≤i), i=1,…,N.

Given an isomorphic function θi: (Li,≤i)→(Li,≤i)
∂ 

in a constituent lattice (Li,≤i), i=1,…,N, where (Li,≤i)
∂ 

≡ (Li,≤ i
∂ ) denotes the dual (lattice) of lattice (Li,≤i), 

then an isomorphic function θ: (L,≤)→(L,≤)∂ is given 
by θ(x1,…,xN)=(θ1(x1),…,θN(xN)).

Given a positive valuation function vi: (Li,≤i)→R 
in a constituent lattice (Li,≤i), i=1,…,N then a positive 
valuation v: (L,≤)→R is given by v(x1,…,xN)=v1(x1)+…
+vN(xN).

It is well-known that a positive valuation vi: (Li,≤i)→
R in a lattice (Li,≤i) implies a metric function di: Li×Li→

0
+R  given by di(a,b) = vi(a∨b) - vi(a∧b).

Minkowski metrics dp: (L1,≤1)×…×(LN,≤N)= (L,≤)→
R are given by

dp(x,y) = 
1/

1 1 N N N1 ( , ) ( , )
pp pd x y d x y + +  , 

where

x= (x1,…,xN), y=(y1,…,yN), p∈R.

An interval [a,b] in a lattice (L,≤) is defined as the 
set [a,b]≐{x∈L: a≤x≤b, a,b∈L}. Let τ(L) denote the set 
of intervals in a lattice (L,≤). It turns out that (τ(L),≤) 
is a lattice, ordered by set inclusion.

Definition 1. The size Zp: τ(L)→ 0
+R  of a lattice 

(L,≤) interval [a,b]∈τ(L), with respect to a 
positive valuation v: (L,≤)→R, is defined as 
Zp([a,b])=dp(a,b).

NEURAL/FUZZY COMPUTING BASED 
ON LATTICE THEORY

This section delineates modified extensions to a hierar-
chy of lattices stemming from the totally ordered lattice 
(R,≤) of real numbers. Then, it details the relevance of 
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novel mathematical tools. Next, based on the previous 
mathematical tools, this section presents extensions 
of ART/SOM/FIS. Finally, it discusses comparative 
advantages.

Modified Extensions in a Hierarchy of 
Lattices

Consider the product lattice (∆,≤) = (R×R,≤∂×≤) = 
(R×R,≥×≤) of generalized intervals. A generalized 
interval (element in ∆) will be denoted by [a,b] and 
will be called positive (negative) for a≤b (a>b). The 
set of positive (negative) generalized intervals will be 
denoted by ∆+ (∆-) − We remark that the set of positive 
generalized intervals is isomorphic to the set of con-
ventional intervals in the set R of real numbers.

A decreasing function θR: R→R is an isomorphic 
function θR: (R,≤)→(R,≤)∂; furthermore, a strictly 
increasing function vR: R→R is a positive valuation 
vR: (R,≤)→R. Hence, function v∆: (∆,≤)→R given by 
v∆([a,b])= vR(θR(a))+vR(b) is a positive valuation in lat-
tice (∆,≤). There follows a metric function d∆: ∆×∆→

0
+R  given by d∆([a,b],[c,d])= [vR(θR(a∧c))-vR(θR(a∨c))] 

+ [vR(b∨d)-vR(b∧d)]; in particular, for θR(x)= -x and 
vR(x)= x it follows v∆([a,b])= |a-c| + |b-d|. Choosing 
parametric functions θR(.) and vR(.) there follow tun-
able nonlinearities in lattice (R,≤). Moreover, note that 
∆ is a real linear space with

•  addition defined as [a,b] + [c,d] = [a+c,b+d], 
and

•  multiplication (by a real k) defined as k[a,b] = 
[ka,kb].

It turns out that ∆+ (as well as ∆-) is cone in linear 
space ∆ − Recall that a subset C of a linear space is 
called cone if for all x∈C and λ>0, we have λx∈C.

Definition 2. A generalized interval number (GIN) is 
a function f: (0,1]→∆.

Let G denote the set of GINs. It follows that (G,≤) is 
a lattice, in particular (G,≤) is the Cartesian product of 
lattices (∆,≤). Moreover, G is a real linear space with

•  addition defined as (G1 + G2)(h) = G1(h) + G2(h), 
h∈(0,1], and

•  multiplication (by a real k) defined as (kG)(h) = 
kG(h), h∈(0,1].

We remark that the cardinality of set G equals 1
1
ℵℵ =

( ) 1
02

ℵℵ = 0 12ℵ ℵ = 12ℵ =ℵ2 > ℵ1, where ℵ1 is the cardinal-
ity of the set R of real numbers.

Proposition 3. Consider metric(s) d∆: ∆×∆→ 0
+R  in 

lattice (∆,≤). Let G1,G2∈(G,≤). Assuming that 
the following integral exists, a metric function 
dG: G×G→ 0

+R  is given by

 dG(G1,G2) = 
1

1 2
0

( ( ), ( ))d G h G h dh∫ Δ .

Our interest here focuses on the sublattice (F,≤) of 
lattice (G,≤), namely sublattice of fuzzy interval num-
bers (FINs). A FIN is defined rigorously as follows.

Definition 4. A fuzzy interval number (FIN) F is a GIN 
such that either (1) both F(h)∈∆+ and h1≤h2 ⇒ 
F(h1)≥F(h2), for all h∈(0,1] (positive FIN) or (2) 
there is a positive FIN P such that F(h) = -P(h), 
for all h∈(0,1] (negative FIN).

Let F+ (F-) denote the set of positive (negative) FINs. 
Note that both F+∪F- = F and F+∩F-=∅ hold. Further-
more, F+ (F-) is a cone with cardinality ℵ1 (Kaburlasos 
& Kehagias, 2006). The previous mathematical analysis 
may potentially produce useful techniques based on 
lattice vector theory (Vulikh, 1967). A positive FIN 
will simply be called “FIN”. A FIN may admit different 
interpretations including a (fuzzy) number, an interval, 
and a cumulative distribution function.

Relevance of Novel Mathematical Tools

A fundamental mathematical result in fuzzy set theory 
is the “resolution identity theorem”, which states that 
a fuzzy set can, equivalently, be represented either by 
its membership function or by its α-cuts (Zadeh, 1975). 
The aforementioned theorem has been given little 
attention in practice to date. However, some authors 
have capitalized on it by designing effective as well as 
efficient fuzzy inference systems (FIS) involving fuzzy 
numbers whose α-cuts are conventional closed intervals 
(Uehara & Fujise, 1993, Uehara & Hirota, 1998).

This work builds on the abovementioned mathemati-
cal result as follows. In the first place, we drop the pos-
sibilistic interpretation of a membership function. Then, 
we consider the corresponding “α-cuts representation”. 
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