Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Multi-Agent Simulation in Organizations: An Overview

Multi-Agent Simulation in Organizations: An Overview
View Sample PDF
Author(s): Nikola Vlahovic (University of Zagreb, Croatia)and Vlatko Ceric (University of Zagreb, Croatia)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch435


View Multi-Agent Simulation in Organizations: An Overview on the publisher's website for pricing and purchasing information.


Most economic and business systems are complex, dynamic, and nondeterministic systems. Different modeling techniques have been used for representing real life economic and business organizations either on a macro level (such as national economics) or micro level (such as business processes within a firm or strategies within an industry). Even though general computer simulation was used for modeling various systems (Zeigler, 1976) since the 1970s the limitation of computer resources did not allow for in-depth simulation of dynamic social phenomena. The dynamics of social systems and impact of the behavior of individual entities in social constructs were modeled using mathematical modeling or system dynamics. With the growing interest in multi agent systems that led to its standardization in the 1990s, multi agent systems were proposed for the use of modeling social systems (Gilbert & Conte, 1995). Multi agent simulation was able to provide a high level disintegration of the models and proper treatment of inhomogeneity and individualism of the agents, thus allowing for simulation of cooperation and competition. A number of simulation models were developed in the research of biological and ecological systems, such as models for testing the behavior and communication between social insects (bees and ants). Artificial systems for testing hypothesis about social order and norms, as well as ancient societies (Kohler, Gumerman, & Reynolds, 2005) were also simulated. Since then, agent-based modeling and simulation (ABMS) established itself as an attractive modeling technique (Klugl, 2001; Moss & Davidsson, 2001). Numerous software toolkits were released, such as Swarm, Repast, MASON and SeSAm. These toolkits make agent-based modeling easy enough to be attractive to practitioners from a variety of subject areas dealing with social interactions. They make agent-based modeling accessible to a large number of analysts with less programming experience.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom