Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Mechanisms of Electrical Conductivity in Carbon Nanotubes and Graphene

Mechanisms of Electrical Conductivity in Carbon Nanotubes and Graphene
View Sample PDF
Author(s): Rafael Vargas-Bernal (Instituto Tecnológico Superior de Irapuato, Mexico)
Copyright: 2018
Pages: 12
Source title: Encyclopedia of Information Science and Technology, Fourth Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-5225-2255-3.ch233


View Mechanisms of Electrical Conductivity in Carbon Nanotubes and Graphene on the publisher's website for pricing and purchasing information.


There is enormous interest in carbon nanomaterials, due to their exceptional physical properties, from the perspective of science and engineering of materials applied to the electronics industry. Until now, significant progress has been made towards understanding the mechanisms of electrical conductivity of carbon nanotubes and graphene. However, scientists around the world even today continue studying these mechanisms, for exploiting them fully in different electronic applications with a high technological impact. This article discusses the mechanisms of electrical conductivity of both nanomaterials, analyzes the present implications, and projects its importance for future generations of electronic devices. In particular, it is important to note that different mechanisms may be identified when these nanomaterials are used individually, when they are incorporated as fillers in composite materials or hybrid materials, or even when they are doped or functionalized. Finally, other electrical variables with important role in electrical conductivity of these materials are also explored.

Related Content

Yair Wiseman. © 2021. 11 pages.
Mário Pereira Véstias. © 2021. 15 pages.
Mahfuzulhoq Chowdhury, Martin Maier. © 2021. 15 pages.
Gen'ichi Yasuda. © 2021. 12 pages.
Alba J. Jerónimo, María P. Barrera, Manuel F. Caro, Adán A. Gómez. © 2021. 19 pages.
Gregor Donaj, Mirjam Sepesy Maučec. © 2021. 14 pages.
Udit Singhania, B. K. Tripathy. © 2021. 11 pages.
Body Bottom