IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Mass and Heat Transfer Modeling

Mass and Heat Transfer Modeling
View Sample PDF
Author(s): Ronald W. Breault (National Energy Technology Laboratory, USA)
Copyright: 2011
Pages: 25
Source title: Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice
Source Author(s)/Editor(s): Sreekanth Pannala (Oak Ridge National Laboratory, USA), Madhava Syamlal (National Energy Technology Laboratory, USA)and Thomas J. O'Brien (National Energy Technology Laboratory, USA)
DOI: 10.4018/978-1-61520-651-3.ch005

Purchase

View Mass and Heat Transfer Modeling on the publisher's website for pricing and purchasing information.

Abstract

Mass and heat transfer are important to reactor modeling using CFD. Reactants (mass) move within the flow structure in order to react with other species and thereby form the products, both desirable and undesirable. This movement in mass occurs either by diffusion or by turbulent dispersion. In a similar fashion, heat is transferred from one point in the flow structure to another point by convective transfer between the phases and with the translational effect that occurs with the turbulent dispersion of the mass. In addition, heat can be transferred across the system boundary. In all these cases, fundamental mechanistic models are put forward that can be incorporated in the CFD code to calculate these transfer properties based upon the local hydrodynamic conditions. The chapter is organized such that dense phase systems are covered first and then dilute phase systems. Within each of these areas mass transfer is covered first and followed by heat transfer. The topics are covered in the following order: Diffusional mass transfer, Turbulent dispersion, Convective heat transfer between phases and Convective heat transfer at the system boundary.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom