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Chapter 5

Mass and Heat 
Transfer Modeling

Ronald W. Breault
National Energy Technology Laboratory, USA

intrOductiOn

Prior to jumping into the discussion of the diffusional mass transfer, heat transfer and the turbulent disper-
sion, a short overview of the balances contained within MFIX is shown below such that these properties 
can be identified. Interphase mass transfer occurs by two mechanisms in heterogeneous gas-solids flows. 
The first of these is through diffusion across the boundary layer and the other is from turbulent transport 
of the species in gas eddies or solids clusters. Before to getting into the details of these two mechanisms 

abstract

Mass and heat transfer are important to reactor modeling using CFD. Reactants (mass) move within 
the flow structure in order to react with other species and thereby form the products, both desirable and 
undesirable. This movement in mass occurs either by diffusion or by turbulent dispersion. In a similar 
fashion, heat is transferred from one point in the flow structure to another point by convective transfer 
between the phases and with the translational effect that occurs with the turbulent dispersion of the 
mass. In addition, heat can be transferred across the system boundary. In all these cases, fundamental 
mechanistic models are put forward that can be incorporated in the CFD code to calculate these trans-
fer properties based upon the local hydrodynamic conditions. The chapter is organized such that dense 
phase systems are covered first and then dilute phase systems. Within each of these areas mass transfer 
is covered first and followed by heat transfer. The topics are covered in the following order: Diffusional 
mass transfer, Turbulent dispersion, Convective heat transfer between phases and Convective heat 
transfer at the system boundary.
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and the methods which will be used to calculate these quantities, it is important to understand how and 
where these properties are used in reacting computational multiphase flow fluid dynamics.

For isothermal conditions, the continuity, momentum, and species balance equations are given below.
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Solids-Phase Continuity
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Gas-Phase Momentum
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Solids-Phase Momentum
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Species Balance
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where m = g or s for the gas or solids phase, Dmn is the turbulent diffusive term, Rmn is the reaction rate 
which is dependent upon the diffusional mass transfer, and ξ0̅ = 1 − ξ0, ξ0 = 1 if R0< 0 else ξ0 = 0. The 
eight dependent hydrodynamic variables in three dimensions are void fraction εg (the solids fraction 
εs = 1 − εg), pressure Pg, and six velocity components. These are found by using MFIX to numerically 
solve the coupled non-linear partial differential equations. The number of species mass fractions (Xmn) 
tracked are given in the chemistry model. Constitutive relations needed to close the system, and the gas/
solids energy balance equations can be found in the following references (Syamlal, M., Rogers, W., & 
O’Brien, T. (1993); Syamlal, M.(1998)). A discussion on the solution procedure and further numerical 
references was prepared by Guenther & Syamlal (2001).

In general, the reaction rate or kinetics follow a conventional resistance model pathway, where the 
rate is is proportional to the sum of the resistance elements such as transfer from the bulk to the particle 
surface plus the internal resistance which may include diffusion of the gas reactant in through an ash/
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