IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Genetic Programming Using a Turing-Complete Representation: Recurrent Network Consisting of Trees

Genetic Programming Using a Turing-Complete Representation: Recurrent Network Consisting of Trees
View Sample PDF
Author(s): Taro Yabuki (The University of Tokyo, Japan)and Hitoshi Iba (The University of Tokyo, Japan)
Copyright: 2005
Pages: 21
Source title: Recent Developments in Biologically Inspired Computing
Source Author(s)/Editor(s): Leandro Nunes de Castro (Mackenzie University, Brazil)and Fernando J. Von Zuben (State University of Campinas, Brazil)
DOI: 10.4018/978-1-59140-312-8.ch004

Purchase

View Genetic Programming Using a Turing-Complete Representation: Recurrent Network Consisting of Trees on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, a new representation scheme for Genetic Programming (GP) is proposed. We need a Turing-complete representation for a general method of generating programs automatically; that is, the representation must be able to express any algorithms. Our representation is a recurrent network consisting of trees (RTN), which is proved to be Turing-complete. In addition, it is applied to the tasks of generating language classifiers and a bit reverser. As a result, RTN is shown to be usable in evolutionary computing.

Related Content

S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh. © 2025. 16 pages.
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan. © 2025. 22 pages.
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi. © 2025. 22 pages.
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh. © 2025. 24 pages.
U. Vignesh, Arpan Singh Parihar. © 2025. 34 pages.
Sharmistha Dey, Krishan Veer Singh. © 2025. 20 pages.
Kalpana Devi. © 2025. 26 pages.
Body Bottom