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ABSTRACT

In this chapter, a new representation scheme for Genetic Programming (GP) is
proposed. We need a Turing-completerepresentation for ageneral method of generating
programs automatically; that is, the representation must be able to express any
algorithms. Our representationisarecurrent network consisting of trees (RTN), which
is proved to be Turing-complete. In addition, it is applied to the tasks of generating
language classifiers and a bit reverser. As a result, RTN is shown to be usable in
evolutionary computing.

INTRODUCTION

Genetic Programming (GP) is a technique for generating programs or functions
automatically (Kozaetal., 1999). GPisatypeof evolutionary computing that aimsto solve
problems through the repetition of modification and selection of prospective solution
candidates. Variousrepresentationsfor programsor functionshavebeen used. Themost
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popular GP (standard GP) usesasingle parsetree (S-expression) asaprogram represen-
tation. S-expressions (e.g., plus (times x 5) (minus (y x))) are made by combining non-
terminals(e.g., plus, minus, times, and divide) and terminals (e.g., X, y, and integers).

We have proposed a substitution for the single S-expression. It is a recurrent
network consisting of trees(RTN). Inthefollowing paragraphs, wewill explainwhy anew
representation isrequired for GP.

When using GP, we must set various configurations. For example: the representa-
tion of individual s, the components of representation, the way to use the representation
and evolutionary operators, and so forth. The strategy to set these configurations
depends on the objective tasks.

The objective tasks of GP can be classified as follows:

(1) Programs that can be easily written by humans.
(2) Programsthat are simpler or more efficient than those written by humans.
(3) Programs that solve unsolved problems.

If the task belongs to either the first or second class, then the configurations can
bedecided withreferencetothepreviously known solution. However, if thetask belongs
to the third class, then it is not easy to set the configurations. Choosing a smaller non-
terminal set and restricting theexpressivenessof individual smay makethesearch easier.
However, shouldthesearchfail, it will beimpossibletofind out whether itisattributable
to GP or the configurations. For example, suppose wetry to generate aclassifier for the
language{ww|w(1{ 0,1} *}. If we usearepresentation whoserepertoireisthesameasone
of the pushdown automaton, then we will never succeed.

One conceivable approach isto start with simpl e settings and gradual ly introduce
complex ones. One method proposed composes the S-expression of basic arithmetic
functions in the early stage, and then introduces a loop or recursion as the search
progresses (Kozaet al., 1999). A strategy like thisis adoptable for atask belonging to
thefirst or second classes mentioned above, but not for the unsolved problems, because
it is not clear how aloop or recursion affects the expressiveness of individuals. For
unsolved problems, a strategy that can confirm the increase of expressiveness is
desirable. Intheideal case, the expressivenessof anindividual finally becomesTuring-
complete. In other words, an individual will be able to express any algorithms.

Additionally, there are other requirements for the new representation for GP.

(1) Simplicity: For example, representationsthat use too many terminals are not easy
to use.

(2) Extensibility: If it is known that some functions, for example, trigonometric
functions, areessential for the problem, thenit must be easy to add thesefunctions.

(3) Similarity to standard GP: A natural extension of the standard GP is desirable,
because of its widespread use.

The RTN proposed in this chapter meets those requirements.

This chapter is organized as follows. In the second section, the expressiveness of
the standard GP is summarized. In thethird section, RTN is proposed with an example.
Inthefourth section, the proof that RTN is Turing-completeisgiven. Inthefifth section,
evolutionary operators for RTN are reviewed. In the sixth section, RTN is applied to
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