Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Ensemble Clustering Data Mining and Databases

Ensemble Clustering Data Mining and Databases
View Sample PDF
Author(s): Slawomir T. Wierzchon (Polish Academy of Sciences, Poland & University of Gdansk, Poland)
Copyright: 2018
Pages: 12
Source title: Encyclopedia of Information Science and Technology, Fourth Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-5225-2255-3.ch170


View Ensemble Clustering Data Mining and Databases on the publisher's website for pricing and purchasing information.


Standard clustering algorithms employ fixed assumptions about data structure. For instance, the k-means algorithm is applicable for spherical and linearly separable data clouds. When the data come from multidimensional normal distribution – so-called EM algorithm can be applied. But in practice the assumptions underlying given set of observations are too complex to fit into a single assumption. We can split these assumptions into manageable hypothesis justifying the use of particular clustering algorithms. Then we must aggregate partial results into a meaningful description of our data. The consensus clustering do this task. In this article we clarify the idea of consensus clustering, and we present conceptual frames for such a compound analysis. Next the basic approaches to implement consensus procedure are given. Finally, some new directions in this field are mentioned.

Related Content

Yair Wiseman. © 2021. 11 pages.
Mário Pereira Véstias. © 2021. 15 pages.
Mahfuzulhoq Chowdhury, Martin Maier. © 2021. 15 pages.
Gen'ichi Yasuda. © 2021. 12 pages.
Alba J. Jerónimo, María P. Barrera, Manuel F. Caro, Adán A. Gómez. © 2021. 19 pages.
Gregor Donaj, Mirjam Sepesy Maučec. © 2021. 14 pages.
Udit Singhania, B. K. Tripathy. © 2021. 11 pages.
Body Bottom