The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Data Mining and Economic Crime Risk Management
Abstract
Economic crime is a billion dollar business and is substantially present in our current society. Both researchers and practitioners have gone into this problem by looking for ways of fraud mitigation. Data mining is often called in this context. In this chapter, the application of data mining in the field of economic crime, or corporate fraud, is discussed. The classification external versus internal fraud is explained and the major types of fraud within these classifications will be given. Aside from explaining these classifications, some numbers and statistics are provided. After this thorough introduction into fraud, an academic literature review concerning data mining in combination with fraud is given, along with the current solutions for corporate fraud in business practice. At the end, a current state of data mining applications within the field of economic crime, both in the academic world and in business practice, is given.
Related Content
Chirag Sharma, Amanpreet Kaur, Priyanka Datta, Yonis Gulzar.
© 2025.
30 pages.
|
M. Johnpaul, Raam Sai Bharadwaj Miryala, Marica Mazurek, G. Jayaprakashnarayana, Ramesh Kumar Miryala.
© 2025.
28 pages.
|
Jatin Arora, Gaganpreet Kaur, Monika Sethi, Saravjeet Singh.
© 2025.
20 pages.
|
L. A. Anto Gracious, L. Sudha, B. Chitra, Gaganpreet Kaur, V. Sathya, P. Kabitha, R. Siva Subramanian.
© 2025.
28 pages.
|
Bhavik Singla, Anuj Kumar Jain, Gaganpreet Kaur, Nitin Jain, Vishal Jain.
© 2025.
28 pages.
|
P. Vijayalakshmi, K. Subashini, B. Selvalakshmi, G. Sudhakar, Anand Anbalagan, N. Bharathiraja, Gaganpreet Kaur.
© 2025.
22 pages.
|
Djamel Saba, Abdelkader Hadidi.
© 2025.
28 pages.
|
|
|