Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Bio-Inspired Algorithms for Ecosystem Data Analysis

Bio-Inspired Algorithms for Ecosystem Data Analysis
View Sample PDF
Author(s): Mohamed Elhadi Rahmani (Dr. Tahar Moulay University of Saida, Algeria)
Copyright: 2018
Pages: 26
Source title: Handbook of Research on Biomimicry in Information Retrieval and Knowledge Management
Source Author(s)/Editor(s): Reda Mohamed Hamou (Dr. Tahar Moulay University of Saida, Algeria)
DOI: 10.4018/978-1-5225-3004-6.ch013


View Bio-Inspired Algorithms for Ecosystem Data Analysis on the publisher's website for pricing and purchasing information.


Ecological systems are known by their relationships with the environment. They affect and are affected by various external factors such as climate and the basic materials that form the soil. Good distinctions of relationships is the first important point in the modeling of ecosystems. The diversity of these systems caused a large amount of data that became hard to analyze, which made researchers classify it as NP-Hard problems. This chapter presents a study of application of bio-inspired algorithms for ecosystem data analysis. The chapter contains application of four different approaches that were inspired by authors of the paper from four different phenomena, and they were applied for analysis of four different ecosystem data collected from real life cases. Results showed a very high accuracy and proved the efficiency of bio-inspired algorithms for supervised classification of real ecosystem data.

Related Content

Tlou Maggie Masenya, Collence Takaingenhamo Chisita. © 2022. 21 pages.
Mmaphuti Carron Teffo, Ignitia Motjolopane, Tlou Maggie Masenya. © 2022. 18 pages.
Neha Lata, Valentine Joseph Owan. © 2022. 17 pages.
Rexwhite Tega Enakrire, Joseph Kehinde Fasae. © 2022. 13 pages.
Madireng Monyela. © 2022. 18 pages.
Valentine Joseph Owan, Daniel Clement Agurokpon. © 2022. 16 pages.
Nkholedzeni Sidney Netshakhuma. © 2022. 18 pages.
Body Bottom