IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Image De-Noising Method Based on Intensity Histogram Equalization Technique for Image Enhancement

An Image De-Noising Method Based on Intensity Histogram Equalization Technique for Image Enhancement
View Sample PDF
Author(s): Shantharajah S. P. (VIT University, India), Ramkumar T (VIT University, India)and Balakrishnan N (Sona College of Technology, India)
Copyright: 2018
Pages: 13
Source title: Computer Vision: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5204-8.ch012

Purchase

View An Image De-Noising Method Based on Intensity Histogram Equalization Technique for Image Enhancement on the publisher's website for pricing and purchasing information.

Abstract

Image enhancement is a quantifying criterion for sharpening and enhancing image quality, where many techniques are empirical with interactive procedures to obtain précised results. The proposed Intensity Histogram Equalization (IHE) approach conquers the noise defects that has a preprocessor to remove noise and enhances image contrast, providing ways to improve the intensity of the image. The preprocessor has the mask production, enlightenment equalization and color normalization for efficient processing of the images which generates a binary image by labeling pixels, overcomes the non-uniform illumination of image and classifies color capacity, respectively. The distinct and discrete mapping function calculates the histogram values and improves the contrast of the image. The performance of IHE is based on noise removal ratio, reliability rate, false positive error measure, Max-Flow Computational Complexity Measure with NDRA and Variation HOD. As the outcome, the different levels of contrast have been significantly improved when evaluated against with the existing systems.

Related Content

Jayashri Dutta, Smitakshi Medhi, Mayurakshi Gogoi, Lisha Borgohain, Nourhan Gamal Abdel Maboud, Hanaa Mustafa Muhameed. © 2025. 34 pages.
Abdellah Khouz, Jorge Trindade, Fatima El Bchari, Pedro Pinto Santos, Eusébio Reis, Adil Moumane, Fatima Ezzahra El Ghazali, Mourad Jadoud, Blaid Bougadir. © 2025. 38 pages.
Phyo Thandar Hlaing, Muhammad Waqas, Usa Wannasingha Humphries. © 2025. 32 pages.
Adil Moumane, Jamal Al Karkouri, Batchi Mouhcine. © 2025. 28 pages.
Abdessamad Elmotawakkil, Nourddine Enneya. © 2025. 20 pages.
Fatima Ezzahra El Ghazali, Abdellah Khouz. © 2025. 30 pages.
Tarik Bahouq, Amina Moumane, Nadia Touhami. © 2025. 28 pages.
Body Bottom