The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
An Empirical Study for Human Behavior Analysis
Abstract
This paper presents an empirical study for human behavior analysis based on three distinct feature extraction techniques: Histograms of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Scale Invariant Local Ternary Pattern (SILTP). The utilised public videos representing spatio-temporal problem area of investigation include INRIA person detection and Weizmann pedestrian activity datasets. For INRIA dataset, both LBP and HOG were able to eliminate redundant video data and show human-intelligible feature visualisation of extracted features required for classification tasks. However, for Weizmann dataset only HOG feature extraction was found to work well with classifying five selected activities/exercises (walking, running, skipping, jumping and jacking).
Related Content
Jayashri Dutta, Smitakshi Medhi, Mayurakshi Gogoi, Lisha Borgohain, Nourhan Gamal Abdel Maboud, Hanaa Mustafa Muhameed.
© 2025.
34 pages.
|
Abdellah Khouz, Jorge Trindade, Fatima El Bchari, Pedro Pinto Santos, Eusébio Reis, Adil Moumane, Fatima Ezzahra El Ghazali, Mourad Jadoud, Blaid Bougadir.
© 2025.
38 pages.
|
Phyo Thandar Hlaing, Muhammad Waqas, Usa Wannasingha Humphries.
© 2025.
32 pages.
|
Adil Moumane, Jamal Al Karkouri, Batchi Mouhcine.
© 2025.
28 pages.
|
Abdessamad Elmotawakkil, Nourddine Enneya.
© 2025.
20 pages.
|
Fatima Ezzahra El Ghazali, Abdellah Khouz.
© 2025.
30 pages.
|
Tarik Bahouq, Amina Moumane, Nadia Touhami.
© 2025.
28 pages.
|
|
|