The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
A Survey of Transformer-Based Stance Detection
Abstract
Stance detection systems are built in order to determine the position of text authors using the text that they produce and other contextual information. As the result of the stance detection procedure, the position of the text producer is determined as favor, against, or none. On the other hand, transformer-based technologies are reported to perform well for various natural language processing tasks. These are deep learning-based models that also incorporate attention mechanism. BERT and its variants are among the most popular transformer-based models proposed so far. In this chapter, the authors provide a plausible literature review on stance detection studies that are based on transformer models. Also included in the current chapter are important further research directions. Stance detection and transformer-based models are significant and recent problems in natural language processing and deep learning, respectively. Hence, they believe that this chapter will be an important guide for related researchers and practitioners working on these topics of high impact.
Related Content
Hewa Majeed Zangana, Marwan Omar.
© 2025.
28 pages.
|
Angel Justo Jones.
© 2025.
38 pages.
|
Angel Justo Jones.
© 2025.
38 pages.
|
Luay Albtosh.
© 2025.
38 pages.
|
Ngozi Tracy Aleke, Ivan Livingstone Zziwa, Kwame Opoku-Appiah.
© 2025.
26 pages.
|
Noble Antwi.
© 2025.
32 pages.
|
Soby T. Ajimon, Sachil Kumar.
© 2025.
46 pages.
|
|
|