Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm

Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm
View Sample PDF
Author(s): Sangeetha K. (Kebri Dehar University, Kebri Dehar, Ethiopia), Shitharth S. (Kebri Dehar University, Kebri Dehar, Ethiopia)and Gouse Baig Mohammed (Vardhaman College of Engineering, India)
Copyright: 2022
Volume: 17
Issue: 2
Pages: 9
Source title: International Journal of Web-Based Learning and Teaching Technologies (IJWLTT)
Editor(s)-in-Chief: Mahesh S. Raisinghani (Texas Woman's University, USA)
DOI: 10.4018/IJWLTT.20220301.oa2


View Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm on the publisher's website for pricing and purchasing information.


In Self-Organizing Maps (SOM) are unsupervised neural networks that cluster high dimensional data and transform complex inputs into easily understandable inputs. To find the closest distance and weight factor, it maps high dimensional input space to low dimensional input space. The Closest node to data point is denoted as a neuron. It classifies the input data based on these neurons. The reduction of dimensionality and grid clustering using neurons makes to observe similarities between the data. In our proposed Mutated Self Organizing Maps (MSOM) approach, we have two intentions. One is to eliminate the learning rate and to decrease the neighborhood size and the next one is to find out the outliers in the network. The first one is by calculating the median distance (MD) between each node with its neighbor nodes. Then those median values are compared with one another. In case, if any of the MD values significantly varies from the rest then it is declared as anomaly nodes. In the second phase, we find out the quantization error (QE) in each instance from the cluster center.

Related Content

Zhao Wang. © 2024. 15 pages.
Jingyuan Chen, Zongjian Fu, Hongfeng Liu, Jinku Wang. © 2024. 14 pages.
Bingbing Yan, Chixiang Ma, Mingfei Wang, Ana Isabel Molina. © 2024. 20 pages.
Ying Liu. © 2024. 16 pages.
Adrian Ting, Karen A. Manaig, Alberto D. Yazon. © 2024. 15 pages.
Hongyu Xie, He Xiao, Yu Hao. © 2024. 14 pages.
Rui Guo. © 2024. 15 pages.
Body Bottom