IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Fractional Reuse Partitioning Schemes for Overlay Cellular Architectures

Fractional Reuse Partitioning Schemes for Overlay Cellular Architectures
View Sample PDF
Author(s): Hazar Cenk Aki (University of South Florida, USA), M. Erturk (University of South Florida, USA)and Huseyin Arslan (University of South Florida, USA)
Copyright: 2012
Pages: 14
Source title: Research, Practice, and Educational Advancements in Telecommunications and Networking
Source Author(s)/Editor(s): Michael Bartolacci (Penn State University - Berks, USA)and Steven R. Powell (California State Polytechnic University - Pomona, USA)
DOI: 10.4018/978-1-4666-0050-8.ch014

Purchase

View Fractional Reuse Partitioning Schemes for Overlay Cellular Architectures on the publisher's website for pricing and purchasing information.

Abstract

In this paper, the authors propose three partitioning schemes for adaptive clustering with fractional frequency reuse namely maximal fractional frequency reuse partitioning (MFRP), optimal fractional reuse partitioning (OFRP), and GoS-oriented frequency reuse partitioning. The authors propose that an overlaid cellular clustering scheme, which uses adaptive fractional frequency reuse factors, would provide a better capacity by exploiting the high level of signal to interference ratio (SIR). The proposed methods are studied via simulations and the results show that the adaptive clustering with different partitioning methods provide better capacity and grade of service (GoS) comparing to the conventional cellular architectures.

Related Content

Raquel Sánchez Ruiz, Isabel López Cirugeda. © 2024. 22 pages.
Rocío Luque-González, Inmaculada Marín-López, Mercedes Gómez-López. © 2024. 22 pages.
Bima Sapkota, Xuwei Luo, Muna Sapkota, Murat Akarsu, Emmanuel Deogratias, Daphne Fauber, Rose Mbewe, Fidelis Mumba, Ram Krishna Panthi, Jill Newton, JoAnn Phillion. © 2024. 34 pages.
Karen Collett, Alina Slapac, Sarah A. Coppersmith, Jingxin Cheng. © 2024. 29 pages.
Maria Ines Marino, Stephanie Tadal, Nurhayat Bilge. © 2024. 25 pages.
Jaqueline Naidoo, Noah Borrero. © 2024. 19 pages.
Crystal Machado, Tami Seifert. © 2024. 20 pages.
Body Bottom