IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Cross-Layer Design in Cognitive Radio Systems

Cross-Layer Design in Cognitive Radio Systems
View Sample PDF
Author(s): Krishna Nehra (King’s College London, UK)and Mohammad Shikh-Bahaei (King’s College London, UK)
Copyright: 2013
Pages: 22
Source title: Self-Organization and Green Applications in Cognitive Radio Networks
Source Author(s)/Editor(s): Anwer Al-Dulaimi (Brunel University, UK), John Cosmas (Brunel University, UK)and Abbas Mohammed (Blekinge Institute of Technology, Sweden)
DOI: 10.4018/978-1-4666-2812-0.ch005

Purchase

View Cross-Layer Design in Cognitive Radio Systems on the publisher's website for pricing and purchasing information.

Abstract

The main functionalities of a cognitive radio system, to ensure efficient operation of the primary users without harmful intervention from the secondary users and to simultaneously satisfy the requirements of the secondary users, are spectrum sensing, spectrum management, spectrum mobility, and spectrum management. These functions involve more than one layer of protocol stack rather than being performed at a single layer. This chapter briefly revisits these functions from the perspective of classification of the roles of different communication network layers in carrying out these functions. An exhaustive study is then presented of the key properties of cross-layer design applications in cognitive radio systems by taking examples from the existing literature and highlighting some open challenges and new opportunities. A cross-layer design example for interference-limited spectrum sharing systems is discussed in detail, which considers the parameters from the Physical Layer (PHY) and the Data Link Layer (DLL) in order to maximize the overall spectral efficiency of the Secondary User (SU). The numerical results show that the secondary link of spectrum sharing systems combining ARQ with adaptive modulation and coding achieves significant gain in throughput depending on the maximum number of retransmissions.

Related Content

Raquel Sánchez Ruiz, Isabel López Cirugeda. © 2024. 22 pages.
Rocío Luque-González, Inmaculada Marín-López, Mercedes Gómez-López. © 2024. 22 pages.
Bima Sapkota, Xuwei Luo, Muna Sapkota, Murat Akarsu, Emmanuel Deogratias, Daphne Fauber, Rose Mbewe, Fidelis Mumba, Ram Krishna Panthi, Jill Newton, JoAnn Phillion. © 2024. 34 pages.
Karen Collett, Alina Slapac, Sarah A. Coppersmith, Jingxin Cheng. © 2024. 29 pages.
Maria Ines Marino, Stephanie Tadal, Nurhayat Bilge. © 2024. 25 pages.
Jaqueline Naidoo, Noah Borrero. © 2024. 19 pages.
Crystal Machado, Tami Seifert. © 2024. 20 pages.
Body Bottom