2292

Chapter 7.21
Bitmap Join Indexes vs.
Data Partitioning

Ladjel Bellatreche
Poitiers University, France

INTRODUCTION

Scientific databases and data warehouses store
large amounts of data ith several tables and at-
tributes. Forinstance, the Sloan Digital Sky Survey
(SDSS) astronomical database contains a large
number of tables with hundreds of attributes,
which can be queried in various combinations
(Papadomanolakis & Ailamaki, 2004). These que-
ries involve many tables using binary operations,
such as joins. To speed up these queries, many
optimization structures were proposed that can
be divided into two main categories: redundant
structures like materialized views, advanced
indexing schemes (bitmap, bitmap join indexes,
etc.) (Sanjay, Chaudhuri & Narasayya, 2000)
and vertical partitioning (Sanjay, Narasayya &
Yang 2004) and non redundant structures like
horizontal partitioning (Sanjay, Narasayya &
Yang 2004; Bellatreche, Boukhalfa & Mohania,
2007) and parallel processing (Datta, Moon, &
Thomas, 2000; Stohr, Méartens & Rahm, 2000).
These optimization techniques are used either in
a sequential manner ou combined. These com-

binations are done intra-structures: materialized
views and indexes for redundant and partitioning
and data parallel processing for no redundant.
Materialized views and indexes compete for the
same resource representing storage, and incur
maintenance overhead in the presence of up-
dates (Sanjay, Chaudhuri & Narasayya, 2000).
None work addresses the problem of selecting
combined optimization structures. In this paper,
we propose two approaches; one for combining
a non redundant structures horizontal partition-
ing and a redundant structure bitmap indexes in
order to reduce the query processing and reduce
the maintenance overhead, and another to exploit
algorithms for vertical partitioning to generate
bitmap join indexes. To facilitate the understand-
ing of our approaches, forreview these techniques
in details.

Data partitioning is an important aspect of
physical database design. In the context of rela-
tional data warehouses, it allows tables, indexes
and materialised views to be partitioned into dis-
joint sets of rows and columns that are physically
stored and accessed separately (Sanjay, Narasayya

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Bitmap Join Indexes vs. Data Partitioning

& Yang 2004). It has a significant impact on per-
formance of queries and manageability of data
warehouses. Two types of data partitioning are
available: vertical and horizontal partitionings.

The vertical partitioning of a table T splits
it into two or more tables, called, sub-tables
or vertical fragment, each of which contains a
subset of the columns in T. Since many queries
access only a small subset of the columns in a
table, vertical partitioning can reduce the amount
of data that needs to be scanned to answer the
query. Note that the key columns are duplicated
in each vertical fragment, to allow “reconstruc-
tion” of an original row in T. Unlike horizontal
partitioning, indexes or materialized views, in
most of today’s commercial database systems
there is no native Database Definition Language
(DDL) support for defining vertical partitions of
a table (Sanjay, Narasayya & Yang 2004). The
horizontal partitioning of an object (a table, a
vertical fragment, a materialized view, and an
index) is specified using a partitioning method
(range, hash, list), which maps a given row in an
object to a key partition. All rows of the object
with the same partition number are stored in the
same partition.

Bitmap index is probably the most important
result obtained in the data warehouse physical
optimization field (Golfarelli, Rizzi & Saltarelli,
2002). The bitmap index is more suitable for low
cardinality attributes since its size strictly depends
on the number of distinct values of the column on
which it is built. Bitmap join indexes (BJIs) are
proposed to speed up join operations (Golfarelli,
Rizzi & Saltarelli, 2002). In its simplest form,
it can be defined as a bitmap index on a table R
based on asingle column of another table S, where
S commonly joins with R in a specific way.

Many studies have recommended the combina-
tion of redundant and non redundant structures
to get a better performance for a given workload
(Sanjay, Narasayya & Yang 2004; Bellatreche,
Schneider, Lorinquer & Mohania, 2004). Most of
previous work in physical database design did not

consider the interdependence between redundant
and no redundant optimization structures. Logi-
cally, BJIs and horizontal partitioning are two
similar optimization techniques - both speed up
query execution, pre-compute join operations and
concern selection attributes of dimension tables'.
Furthermore, BJIs and HP can interact with one
another, i.e., the presence of an index can make a
partitioned schema more efficient and vice versa
(since fragments have the same schema of the
global table, they can be indexed using BJIs and
BJIs can also be partitioned (Sanjay, Narasayya
& Yang 2004)).

BACKGROUND

Note that each BJI can be defined on one or sev-
eral non key dimension’s attributes with a low
cardinality (that we call indexed columns) by
joining dimension tables owned these attributes
and the fact table’.

Definition: Anindexed attribute AJ candidate
for defining a BJI is a column Aj of a dimension
table D, with a low cardinality (like gender at-
tribute) such that there is a selection predicate of
the form: D.A, 0 value, 0 is one of six comparison
operators {=<,>,<=>=}, and value is the predicate
constant.

For a large number of indexed attributes
candidates, selecting optimal BJIs is an NP-hard
problem (Bellatreche, Boukhalfa & Mohania,
2007).

On the other hand, the best way to partition
a relational data warehouse is to decompose the
fact table based on the fragmentation schemas
of dimension tables (Bellatreche & Boukhalfa,
2005). Concretely, (1) partition some/all dimen-
sion tables using their simple selection predicates
(Di.Aj 0 value), and then (2) partition the facts
table using the fragmentation schemas of the
fragmented dimension tables (this fragmentation
is called derived horizontal fragmentation (Ozsu
a Valduriez, 1999)). This fragmentation procedure

2293



7 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/bitmap-join-indexes-data-partitioning/8037

Related Content

Fuzzy Database Approaches

Jose Galindo, Angelica Urrutiaand Mario Piattini (2006). Fuzzy Databases: Modeling, Design and
Implementation (pp. 45-59).

www.irma-international.org/chapter/fuzzy-database-approaches/18759

Transaction Concurrency Methods
Lars Frank (2005). Encyclopedia of Database Technologies and Applications (pp. 695-700).
www.irma-international.org/chapter/transaction-concurrency-methods/11226

Towards a Normal Form and a Query Language for Extended Relations Defined by Regular
Expressions
Andras Benczurand Gyula I. Szab6 (2016). Journal of Database Management (pp. 27-48).

www.irma-international.org/article/towards-a-normal-form-and-a-query-language-for-extended-relations-defined-by-

regular-expressions/165161

A Scalable Algorithm for One-to-One, Onto, and Partial Schema Matching with Uninterpreted

Column Names and Column Values
Boris Rabinovichand Mark Last (2014). Journal of Database Management (pp. 1-16).
www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-

uninterpreted-column-names-and-column-values/138623

Intension Mining

Héctor Oscar Nigroand Sandra Elizabeth Gonzalez Cisaro (2005). Encyclopedia of Database Technologies
and Applications (pp. 298-303).

www.irma-international.org/chapter/intension-mining/11163



http://www.igi-global.com/chapter/bitmap-join-indexes-data-partitioning/8037
http://www.irma-international.org/chapter/fuzzy-database-approaches/18759
http://www.irma-international.org/chapter/transaction-concurrency-methods/11226
http://www.irma-international.org/article/towards-a-normal-form-and-a-query-language-for-extended-relations-defined-by-regular-expressions/165161
http://www.irma-international.org/article/towards-a-normal-form-and-a-query-language-for-extended-relations-defined-by-regular-expressions/165161
http://www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-uninterpreted-column-names-and-column-values/138623
http://www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-uninterpreted-column-names-and-column-values/138623
http://www.irma-international.org/chapter/intension-mining/11163

