
��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.2
Database Design Based on B

Elvira Locuratolo
ISTI, Consiglio Nazionale delle Ricerche, Italy

abstract

This chapter is devoted to the integration of the
ASSO features in B. ASSO is a database design
methodology defined for achieving conceptual
schema consistency, logical schema correctness,
flexibility in reflecting the real-life changes on the
schema and efficiency in accessing and storing
information. B is an industrial formal method
for specifying, designing, and coding software
systems. Starting from a B specification of the
data structures and of the transactions allowed
on a database, two model transformations are
designed: The resulting model, called Structured
Database Schema, integrates static and dynamics
exploiting the novel concepts of Class-Machine
and Specialized Class-Machine. Formal details
which must be specified if the conceptual model
of ASSO is directly constructed in B are avoided;
the costs of the consistency obligations are mini-
mized. Class-Machines supported by semantic
data models can be correctly linked with Class-
Machines supported by object Models.

IntroductIon

The B Method (Abrial, 1996) is an industrial gen-
eral-purpose formal method which uses a model,
the Abstract Machine, to encapsulate a fragment
of the state within a provably consistent specifi-
cation and a refinement theory to derive correct
programs. The direct use of B for developing
database applications can lead to several advan-
tages including the possibility of guaranteeing
the correctness of the design process; however, it
presents some shortcomings: The B Method lacks
the abstraction mechanisms supported by the da-
tabase conceptual languages, and its refinement
has not been designed to obtain efficient database
implementations. Specifying a database applica-
tion with the B notation is a tedious process, since
many properties implicitly declared within the
database conceptual schemas must be explicated.
Further, the consistency proofs are too expensive,
since they must be performed with respect not
only to the application constraints, but also to the
conceptual schema constraints.

 ���

Database Design Based on B

ASSO (Locuratolo, 1997, 2002, 2004; Locu-
ratolo & Matthews, 1999a, b, c) is an innova-
tive database design methodology defined for
achieving conceptual schema consistency, logical
schema correctness, flexibility in reflecting the
real-life changes on the schema and efficiency in
accessing and storing information. This makes
it possible to overcome some inadequacies of
existing informal methodologies (Batini, Ceri, &
Navathe, 1992; Booch, 1994; Rumbaugh, Booch,
& Jacobson, 1999) such as to guarantee the con-
ceptual schema consistency and the logical schema
correctness. Background information on ASSO
can be found in initially disjointed approaches of
work: A former approach aimed at establishing
formal relationships between classes of objects
based on semantic data models and classes of
objects based on object models. The objective
was to achieve the flexibility of semantic data
models and the efficiency of the object-oriented
database systems. This approach, called Parti-
tioning Method, was proposed as a static method
in 1992 (Locuratolo & Rabitti, 1998). A latter
approach aimed at integrating features from con-
ceptual modeling and abstract machines in order
to guarantee the conceptual schema consistency
(Castelli & Locuratolo, 1994). ASSO (Castelli
& Locuratolo, 1995) tried to integrate these two
approaches; however, the proposed model was not
suitable to the Partitioning Method applicability.
Approaches of study to design the conceptual
model of ASSO, called Structured Database
Schema and the ASSO refinement can be found
in Andolina and Locuratolo (1997) and Locura-
tolo (1997). The Structured Database Schema
integrates the specification of both structural and
behavioral information at a high abstraction level.
It extends the model on which the Partitioning
works by designing elementary operations that
add objects, remove objects, modify attributes,
or let the class unchanged in order to still allow
the Partitioning applicability. Approaches of
translation from ASSO to B have been proposed
in papers by Locuratolo and Matthews (1999, a,

b, c). The approach employed to define ASSO,
called MetaASSO has been described in Locura-
tolo (2002). The unitary element in the definition
of ASSO is that of correct model transformation,
as evidenced in Locuratolo (2004). Differently
from a recent approach to the specification and
development of database applications based on B
(Mammar & Laleau, 2003), where the database
application refinements have been implemented
using the relational database model, in ASSO
classes of objects supported by semantic data
models and classes of objects supported by object
systems are linked together.

This chapter aims at raising the abstraction
level of B exploiting features of ASSO. Starting
from a B specification of the data structures and
of the transactions allowed on a database, two
model transformations are designed. The former
transformation, called Database Schema Model,
restricts the state of the model supported by B in
order to represent aspects which are typical of
database applications. The latter transformation,
called Structured Database Schema, reduces the
possible B operations on the state of the Data-
base Schema Model. The Structured Database
Schema is a Conceptual/Semantic model based
on a graph which integrates static and dynamics.
The Structured Database Schema specifications
are written using a formal notation which exploits
the concepts of Class-Machine and Specialized
Class-Machine, two concepts which enrich the
corresponding concepts supported by the database
conceptual languages with transactions and ap-
plication constraints. In the Structured Database
Schema specifications, many formal details are
avoided with respect to the B specifications and
only the state transformations, which satisfy
the class and the specialization constraints, are
allowed.

Two different forms of refinement are applied
to a conceptual schema: behavioral refinement
and data refinement. The behavioural refinement
is defined by steps of B refinements which leave
the state unchanged while modifying transactions,

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/database-design-based/7925

Related Content

Agile Modeling, Agile Software Development, and Extreme Programming: The State of Research
John Erickson, Kalle Lyytinenand Keng Siau (2005). Journal of Database Management (pp. 88-100).

www.irma-international.org/article/agile-modeling-agile-software-development/3343

Representing Classes of Things and Properties in General in Conceptual Modelling: An

Empirical Evaluation
Graeme G. Shanks, Daniel Moody, Jasmina Nuredini, Daniel Tobinand Ron Weber (2012). Cross-

Disciplinary Models and Applications of Database Management: Advancing Approaches (pp. 103-130).

www.irma-international.org/chapter/representing-classes-things-properties-general/63664

Inherent Fusion: Towards Scalable Multi-Modal Similarity Search
Petra Budikova, Michal Batko, David Novakand Pavel Zezula (2016). Journal of Database Management

(pp. 1-23).

www.irma-international.org/article/inherent-fusion/178633

Raster Databases
Peter Baumann (2005). Encyclopedia of Database Technologies and Applications (pp. 517-523).

www.irma-international.org/chapter/raster-databases/11198

Antecedents of Online Game Dependency: The Implications of Multimedia Realism and Uses

and Gratifications Theory
Kaunchin Chen, Jengchung V. Chenand William H. Ross (2012). Cross-Disciplinary Models and

Applications of Database Management: Advancing Approaches (pp. 176-208).

www.irma-international.org/chapter/antecedents-online-game-dependency/63667

http://www.igi-global.com/chapter/database-design-based/7925
http://www.irma-international.org/article/agile-modeling-agile-software-development/3343
http://www.irma-international.org/chapter/representing-classes-things-properties-general/63664
http://www.irma-international.org/article/inherent-fusion/178633
http://www.irma-international.org/chapter/raster-databases/11198
http://www.irma-international.org/chapter/antecedents-online-game-dependency/63667

