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Data mining is the process of ‘sifting through the mass of organizational
(internal and-external) data to identify patternscritical for decision support.
Successful implementation of the data mining effort requires a careful
assessment of the varioustoolsand algorithmsavailable. Thebasic premise
of thisstudy isthat machine-learning algorithms, which areassumptionfree,
should outperform their traditional counterparts when mining business
databases. Theobjectiveof thisstudyistotest thisproposition by investigating
the performance of the algorithms for several scenarios. The scenariosare
based on simulationsdesigned to refl ect the extent to whichtypical statistical
assumptions are violated in the business domain. The results of the
computational experiments support the proposition that machine learning
algorithms general ly-outperformtheir statistical counterpartsunder certain
conditions. These canbeused asprescriptiveguidelinesfor theapplicability
of data mining techniques.

INTRODUCTION

Theamount of datacollected by businessestoday isincreasing at aphenom-
end rate. Businessesfacethechallengeofintegratingand correlatingdatarel ated
toonlinesaes, offlinesdes, customer satisfactionsurveys, andserverlogfiles. Data
miningistheprocessof sifting throughthemassof organizational (internal and
external) datato.identify patterns critical for decision support. Datamining
techniqueshavebeensuccessfully empl oyedinapplicationslikefrauddetectionand
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bankruptcy prediction (Tam and Kiang, 1992; Lee, Han, and Kwon, 1996;
Kumar, Krovi and Rajagopalan, 1997), strategi c decision-making (Nazemand
Shin, 1999) and databasemarketing (Brachman, 1996). Today, businesseshave
theuniqueopportunity for using suchtechniquesfor target marketingand customer
retention. Theanalysisof thisdataiscritical asmoreand morebus nessesusethis
informationtoanalyzetheir competition, product or market. Intelligent toolswhich
arebased on rulesderived from web mining can a so play animportant rolein
personalizationrel ated to sitecontent and presentation. Recently, therehasbeen
considerableinterest onhow tointegrateand minesuch data(M ulvenna, Anand,
& Buchner, 2000, Brachman, K habaza, Kloesgen, Piatetsky-Shapiro,andSimoudis,
1996).

Businessdatabasesingenera poseaunigueproblemfor patternextraction
becauseof their complex nature. Thiscomplexity arisesfromanomaliessuchas
discontinuity, noise, ambiguity, andincompl eteness(Fayyad, Piatetsky-Shapiro,
and Smyth, 1996). Andyzingsuchdataisakey requirementfor effectivedecison
making. Decisionsupporttools, however, vary inther ability toprovidethisdegree
of andyticd processng. ThisisillustratedinFigurel. Historicdly, decisonmakers
had tomanually deducepatternsusinginformationgenerated by query reporting
systems. Onelevel of anal ytical sophisticationabovethiswastheability tol ook at
thedataand performanalysessuchasWhat-1f and goal seeking. Morerecently,
onlineana ytical processng (OLAP) systemshaveshown promiseinprovidingdrill
downcapahilities-However, knowledgediscovery of non-intuitivepatternsis
possibleonly by using datamining. Theseapproachescan extend thepower of
decisionsupporttool sfor moreunstructuredtasks.

Figure 1: A Framework for Analytical Processing
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