
1927

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 91

DOI: 10.4018/978-1-4666-4301-7.ch091

Reuse across Multiple
Architectures

ABSTRACT

The commonality across software systems can be exploited to develop multiple heterogeneous systems
successfully without undue cost, time, and effort. The systematic reuse across different systems is of para-
mount importance. With a well-planned reuse approach, a vendor can offer individualized products, which
are products tailored to meet the requirements of a particular user effectively, as well as the products
constructed to deliver solutions for a greater variety of application domains such as enterprise applica-
tion integration and business process management. This chapter describes the development of software
systems having different architectures reusing most of the implementations of the required functionalities
as-is. It presents a systematic process for crafting multi-architecture reusable components and for using
those components in formulating software systems. Furthermore, the chapter highlights the significance
of the strategic reuse across systems in three contemporary research spheres.

INTRODUCTION

Software reuse has been widely touted as means of
amortizing the cost of the software development.
Two notable engineering disciplines that have
exploited reuse are software product line (SPL)
and component-based development (CBD). SPL
has been employing strategic reuse to formulate
product families successfully (Bass, Clements,

& Kazman, 2003). CBD has incorporated reus-
ability into the software development process to
make software reuse a driving force in developing
software systems (Crnkovic & Larsson, 2002).
Although these reuse paradigms can establish a
process for reuse, without purposefully architect-
ing systems, components and other artifacts for
reuse, the desired reuse goals would not be at-
tainable (Griss, 1999). For instance, as not every
architecture style facilitates reuse, the employed
architecture for a particular component-based

Indika Kumara
WSO2 Inc, Sri Lanka

Chandana Gamage
University of Moratuwa, Sri Lanka

1928

Reuse across Multiple Architectures

system may impede the opportunities for reuse.
Moreover, a new product can use an existing com-
ponent; however, the component cannot provide
the software qualities that the product expects.

The capability to produce a variety of soft-
ware systems offers both vendors and customers
discernible advantages. A customer can use a
tailor-made product that provides minimum yet
optimum functionalities required for implement-
ing only her or his own business solutions. In
addition, a customer can gain the flexibility to
adapt the systems and applications to support the
changing business goals of the organization. From
a vendor’s perspective, the software systems devel-
oped to provide solutions for different application
domains such as enterprise application integration
(EAI), business process management (BPM), etc.,
can potentially enable a vendor to reach to wide-
ranging customers. However, the heterogeneity
of the systems poses grand challenges on how to
develop multiple systems cost and time effectively.
Typically, software architectures, features, and
technologies make systems different. In order to
achieve tremendous savings in costs and time in
producing multiple different software systems,
a systematic reuse across the systems is crucial
(Altintas & Cetin, 2008) (Griss, 1999), and the
components that are reusable across the systems
can provide the required reusability.

A critical issue undermines a sustainability of
a software system is architectural erosion, a phe-
nomenon in which a system’s architecture decays
over time to the point that it does not exhibit its
key attributes. An eroded architecture is unwieldy
and cannot adequately respond to the changes in
requirements. Redesigning such architecture from
scratch is practical compared with maintaining it
(Gurp, 2002). A key reason for architectural ero-
sion is that a system has to undergo an evolution
to accommodate ever changing customer require-
ments. Architectural erosion can be stemmed if the
system can reform its architecture to fulfill the new
emerging demands (Bernhard, 2010). Therefore,
the capability for changing the architecture of a

system with either practical or economical ease
is a promising solution for architectural erosion.
An approach to achieve a systematic reuse across
systems having different architectures paves the
way for such a solution.

There is no considerable research related to
the reuse across multiple architectures, and we
observe that previous research has focused merely
on functionality reuse and have not taken into ac-
count that a reusable component should be capable
of supporting quality requirements required by
various systems. Furthermore, most of the exist-
ing approaches do not provide a suitable solution
to prevent architectural erosion that weakens the
reusability and sustainability of the components
and the systems.

The objectives of this chapter are to introduce
the reader Multi-Architecture Reusable Compo-
nents, and to discuss the techniques for design-
ing and implementing them. We also present an
approach for using them in producing multiple
software systems successfully. Our experiment
with two middleware systems shows that our ap-
proach provides a systematic reuse across different
systems effectively.

This chapter is structured as follows. Sec-
tion Background explores the opportunities for
exploiting reuse across systems, and highlights
related work. Next sections unfold our approach
for achieving large scale reuse across multiple
architectures. Finally, we present our conclusions
and future research directions.

BACKGROUND

Simply stated, software reuse across multiple
architectures is systematically creating software
systems having diverse architectures from existing
software assets. In this context, a strategic reuse
precludes the mere functionality reuse and pro-
motes the reuse of functionality with the quality
attributes required for a particular software sys-
tem. Such reuse provides a software vendor with

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reuse-across-multiple-architectures/77786

Related Content

A Formal Language for Modelling and Verifying Systems-of-Systems Software Architectures
Akram Seghiri, Faiza Belalaand Nabil Hameurlain (2022). International Journal of Systems and Service-

Oriented Engineering (pp. 1-17).

www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-

architectures/297137

Flow Based Classification for Specification Based Intrusion Detection in Software Defined

Networking: FlowClassify
Nithya Sampathand Dinakaran M. (2019). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-

defined-networking/223518

Performance Analysis of a Distributed Execution Environment for JUnit Test Cases on a Small

Cluster
Eric Bower, Tauhida Parveenand Scott Tilley (2013). Software Testing in the Cloud: Perspectives on an

Emerging Discipline (pp. 96-112).

www.irma-international.org/chapter/performance-analysis-distributed-execution-environment/72228

Protein Classification Using N-gram Technique and Association Rules
Fatima Kabli, Reda Mohamed Hamouand Abdelmalek Amine (2018). International Journal of Software

Innovation (pp. 77-89).

www.irma-international.org/article/protein-classification-using-n-gram-technique-and-association-rules/201486

Assimilating and Optimizing Software Assurance in the SDLC: A Framework and Step-Wise

Approach
Aderemi O. Adenijiand Seok-Won Lee (2012). Security-Aware Systems Applications and Software

Development Methods (pp. 16-34).

www.irma-international.org/chapter/assimilating-optimizing-software-assurance-sdlc/65840

http://www.igi-global.com/chapter/reuse-across-multiple-architectures/77786
http://www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-architectures/297137
http://www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-architectures/297137
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/chapter/performance-analysis-distributed-execution-environment/72228
http://www.irma-international.org/article/protein-classification-using-n-gram-technique-and-association-rules/201486
http://www.irma-international.org/chapter/assimilating-optimizing-software-assurance-sdlc/65840

