
1787

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 85

DOI: 10.4018/978-1-4666-4301-7.ch085

Resolving Conflict in
Code Refactoring

ABSTRACT

Refactoring is a process that attempts to enhance software code quality by using small transforming func-
tions and modifying the structure of the program through slightly different algorithm. It is important to
analyze the design pattern of the software code as well as the impact and possibility of the application of
some conflicting refactorings on it. The objective of this chapter is to present an approach for analyzing
software design patterns in order to avoid the conflict in application of available refactoring techniques.
This chapter discusses the mechanism to study software code or design patterns to automate the process
of applying available refactorings while addressing the problem of conflict in their application.

INTRODUCTION

The term ‘Refactoring’, which was first introduced
by William Opdyke and Ralph Johnson, and then
popularized by M. Fowler, is meant to improve
internal code structure without altering external
functionality of a software system. It attempts to
enhance code quality by using small transform-
ing functions and modifying the structure of the

program through slightly different algorithm.
After pattern analysis in programs, software code
quality can be enhanced by minor modifications
in the program design and that is the stage where
Software Refactoring comes into play. It is ob-
served that developers can either streamline the
size of a software product after development and
simplify its design, or speed up its download and
execution speed with the help of Refactorings. This
fundamental activity also aims to help organiza-
tions in maintaining and updating their software

Lakhwinder Kaur
Apeejay Institute of Management Technical Campus, India

Kuljit Kaur
Guru Nanak Dev University, India

Ashu Gupta
Apeejay Institute of Management Technical Campus, India

1788

Resolving Conflict in Code Refactoring

more easily. It is an iterative process and it must
result in significant improvement over original
version of the software.

In fact, Refactoring facilitates reverse engineer-
ing process also, which is a process of analyzing
and extracting patterns in source code programs
in order to understand their system functionality
and representation. As the software needs to be
continuously monitored and updated in order to
meet the rapid changes in requirements of the
industry, there is a crucial need to exploit reverse
engineering during different stages of the software
development. Program design analysis is required
in reverse engineering in order to ensure consis-
tency of the software components.

In brief, when applied in a disciplined way,
the summed up impact of refactoring must be
significant for improving the efficiency and quality
of code. But the problem is that automated, as-
sisted or even manual application of refactorings
suggested so far, may result in either negative or
lesser impact on the quality of software than it was
targeted. The reason is- some pairs of refactoring
techniques are opposite to each other and they may
nullify each other’s impact when performed in a
particular order. Hence, it is important to analyze
the design pattern of the software code as well as
the impact and possibility of the application of
some conflicting refactorings on it. This chapter
attempts to analyze code design patterns, which
may lead to conflict in the application of refactor-
ings and suggests a mechanism to avoid it.

BACKGROUND

Though the work of Opdyke (1992), and
Johnson(1997), has been the pillar behind in-
troducing refactoring techniques, the work by
M.Fowler(1999) suggested various refactorings.
Since then, a number of researchers are engaged
in finding effective ways of applying refactorings
in software codes. Refactoring techniques are ap-
plied at various levels starting from design level to

various control structures in a program. R. Najjar,
S. Counsell, G. Loizou, and K.Mannock(2003)
proved that by replacing constructors with fac-
tory methods and making minor modifications
to the interface provided by the class, the lines
of code can be reduced and classes can provide
better abstraction. They have shown the positive
effect of refactoring on softwares by improving its
quality and efficiency. Mens and Tourwe(2004),
performed a comprehensive survey of the research
in refactoring upto that time. They classified re-
search according to Five criteria and presented that
a tool or formal model for refactoring should be
sufficiently abstract to be applicable to different
programming languages, but it should also provide
the necessary interface to add language-specific
behaviour.

Tokuda and Batory(1995) proposed automated
search for refactoring trends. They implemented
12 object oriented database refactorings described
by Banerjee and Kim(1987). They were able to
automate thousands of lines of changes with a
general-purpose set of refactorings. They imple-
mented the refactorings in C++ and expressed
the difficulty in managing C++ preprocessor
Information. Beck(2000) suggested that there is
correlation between characteristics of the rapid
software development and the need for frequent
refactorings. In case of rapid software develop-
ment, programmers do not bother about code
simplicity, understandability and maintainabil-
ity. M. Boger et al(2002) introduced refactoring
browser integrated in a UML modeling tool. They
discussed how Refactorings can be extended to
static architecture as well as to dynamic behaviour.

Moving state and behavior between class-
es can help reduce coupling and increase
cohesion(Pressman,2001). The cumulative
effect of several simple refactoring steps and
the available tool support for their automated
application has made the refactoring process a
widely accepted technique for improving software
design. However, identifying the places where
refactoring should be applied is neither trivial

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/resolving-conflict-code-refactoring/77780

Related Content

An Empirical Investigation on Vulnerability for Software Companies
Jianping Peng, Guoying Zhangand Chun-Hung Chiu (2022). International Journal of Systems and Software

Security and Protection (pp. 1-15).

www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894

A Hybrid Approach for Feature Selection Based on Genetic Algorithm and Recursive Feature

Elimination
Pooja Rani, Rajneesh Kumar, Anurag Jainand Sunil Kumar Chawla (2021). International Journal of

Information System Modeling and Design (pp. 17-38).

www.irma-international.org/article/a-hybrid-approach-for-feature-selection-based-on-genetic-algorithm-and-recursive-

feature-elimination/276416

Investigation of ANFIS and FFBNN Recognition Methods Performance in Tamil Speech Word

Recognition
S. Rojathaiand M. Venkatesulu (2014). International Journal of Software Innovation (pp. 43-53).

www.irma-international.org/article/investigation-of-anfis-and-ffbnn-recognition-methods-performance-in-tamil-speech-

word-recognition/119989

Quality-Driven Model Transformations: From Requirements to UML Class Diagrams
Silvia Abrahão, Marcela Genero, Emilio Insfran, José Ángel Carsí, Isidro Ramosand Mario Piattini (2009).

Model-Driven Software Development: Integrating Quality Assurance (pp. 302-326).

www.irma-international.org/chapter/quality-driven-model-transformations/26834

Towards a High-Availability-Driven Service Composition Framework
Jonathan Lee, Shang-Pin Ma, Shin-Jie Lee, Chia-Ling Wuand Chiung-Hon Leon Lee (2014). Software

Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 1498-1520).

www.irma-international.org/chapter/towards-high-availability-driven-service/77768

http://www.igi-global.com/chapter/resolving-conflict-code-refactoring/77780
http://www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894
http://www.irma-international.org/article/a-hybrid-approach-for-feature-selection-based-on-genetic-algorithm-and-recursive-feature-elimination/276416
http://www.irma-international.org/article/a-hybrid-approach-for-feature-selection-based-on-genetic-algorithm-and-recursive-feature-elimination/276416
http://www.irma-international.org/article/investigation-of-anfis-and-ffbnn-recognition-methods-performance-in-tamil-speech-word-recognition/119989
http://www.irma-international.org/article/investigation-of-anfis-and-ffbnn-recognition-methods-performance-in-tamil-speech-word-recognition/119989
http://www.irma-international.org/chapter/quality-driven-model-transformations/26834
http://www.irma-international.org/chapter/towards-high-availability-driven-service/77768

