1200

Chapter 59

Design of Language
Learning Software

Vehbi Turel
The University of Bingol, Turkey

Peter McKenna
Manchester Metropolitan University, UK

ABSTRACT

In this chapter, the authors focus on the principles and guidelines that should be borne in mind when
designing and developing (interactive multimedia) language software for foreign language learning. The
stages of software design and development can be categorized into six separate stages: (1) feasibility,
(2) setting up a team of experts, (3) designing, (4) programming, (5) testing, and (6) evaluating. Each
stage is vital to the design and development process for cost effective software, and a wide range of
principles and guidelines need to be borne in mind at each stage in order to design and develop effective
language learning software. Here, the authors focus on the design principles and guidelines that need
to be considered while designing and developing language software.

INTRODUCTION

It would not be wrong to say that there were limita-
tions to educational technology a decade ago, for
example, the diminished quality of compressed
video clips (Soboleva & Tronenko, 2002, pp. 488,
496). Software on the market used to be called
‘shovelware’ (Clifford, 1998, pp. 2-8; Le Mon,
1988, p. 39). Since then development in the field
of educational technology has occurred very rap-
idly. As aresult, educational technology can now

DOI: 10.4018/978-1-4666-4301-7.ch059

enable us to design and develop technologically
very highly sophisticated software for Foreign
Language Learning (FLL). The main problem is
no longer the technological dimension.
However, there are still many programs for
FLL on the market some aspects of which are not
sophisticated pedagogically and psychologically
(Turel, 2010, p. 399; Draper, 2009, pp. 306-315;
Trinder, 2002, pp. 69-84; Ferney & Waller, 2001,
p. 156) although research in the field of language
software development has increased tremendously
(Hwa, et al., 2012, pp. 35-50; Abobaker & Hus-
sein, 2012, pp. 61-63; Godwin-Jones,2010; Blake,

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Design of Language Learning Software

2008; Zaphiris, 2006). Some programs even
feature spelling errors although written by native
speakers (TES Teacher, 2004, p. 18).

In short, problems now fundamentally stem
from materials writers, not the technology itself.
Therefore, to be able to design and develop cost
effective and professional software for FLL,
there are certain scientific educational findings
and implications that need to be implemented at
every single stage of program design and devel-
opment (Draper, 2009; Turel, 2004; Brett, 1999;
Peter, 1994).

Inorder for us to be able to create sophisticated
language software, teams of experts are needed
(Turel, 2004, p. 140). Under normal conditions, to
be able to create cost-effective software for FLL,
the active participation of most of the experts
below (depending on the type of the language
software program we want to create) is essential.
These are: (specialist language) teachers/experts,
programmers, graphic designers, audio engineers,
photographers, artists, voice actors, film directors/
specialists, musicians, animators, and (the target)
Language Learners (LLs) (see Figure 1).

The involvement of these experts is necessary
and important (Nicholson & Ngai, 1996, p. 3).
For instance, target LLs’ involvement, ‘produces
more useable and effective’ software (Nikolova,
2002, p. 112; Kennedy & McNaught, 1997, p. 6;
MacGregor, 1993, pp. 61, 63; Eraut, 1988), al-
though all materials that are based on findings
practically, to some extent, feature LLs’ involve-
ment indirectly, as the findings are very often
LLs’ preferences, views, ideas, progress etc.
Likewise, the lack of a specialist programmer
hinders not only the use of the maximum potential
of the tools, but also results in a lack of the
minimum requirements. In one project, for in-
stance, it came to a point where the developers
had to ask a ‘programming specialist to take over

.. the software development work” (Grob & Wolff,
2001, p.249). Similarly, in Lyall and McNamara’s
(2000, p. 133) case, due to technical problems the
LLs encountered, many LLs did not continue
studying with the CALL program. In Debski and
Gruba’s (1999, pp. 219-239) study, the problems
in the computer classroom were mostly technol-
ogy related and the software was seen as unreliable

Figure 1. Potential experts that are essential for creating real sense cost effective language learning

software

Programmers

{Specializst Language) Teachm

‘ {Tamet Language) Leamm \

* Photographers '—".7

Graphic l_designem

. Animators

ingup -""""
a Team of

[ro— Audio Engineers

M_

. Voice Actors

Film Directors / Specialists

" ... More: depending on the needs

1201



20 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/design-language-learning-software/77754

Related Content

Security Integration in DDoS Attack Mitigation Using Access Control Lists

Sumit Kumar Yadav, Kavita Sharmaand Arushi Arora (2018). International Journal of Information System
Modeling and Design (pp. 56-76).
www.irma-international.org/article/security-integration-in-ddos-attack-mitigation-using-access-control-lists/208639

An Efficient Software Design for Large-Scale Railway BIM

Qiang Gao, Lixian Qiao, Wei Liuand Yalong Xie (2025). International Journal of Information System
Modeling and Design (pp. 1-17).
www.irma-international.org/article/an-efficient-software-design-for-large-scale-railway-bim/373199

Elicitation and Documentation of Non-Functional Requirements for Sociotechnical Systems
Daniel Kerkow, Jorg Dérr, Barbara Paech, Thomas Olssonand Tom Koenig (2005). Requirements
Engineering for Sociotechnical Systems (pp. 284-302).

www.irma-international.org/chapter/elicitation-documentation-non-functional-requirements/28415

Social Network Structures in Open Source Software Development Teams

Yuan Longand Keng Siau (2009). Software Applications: Concepts, Methodologies, Tools, and Applications
(pp. 1835-1848).

www.irma-international.org/chapter/social-network-structures-open-source/29481

Efficient Scheduling of Jobs and Allocation of Resources in Cloud Computing

Sandeep Gajanan Sutarand Kumarswamy S. (2022). International Journal of Software Innovation (pp. 1-
13).
www.irma-international.org/article/efficient-scheduling-of-jobs-and-allocation-of-resources-in-cloud-computing/307013



http://www.igi-global.com/chapter/design-language-learning-software/77754
http://www.irma-international.org/article/security-integration-in-ddos-attack-mitigation-using-access-control-lists/208639
http://www.irma-international.org/article/an-efficient-software-design-for-large-scale-railway-bim/373199
http://www.irma-international.org/chapter/elicitation-documentation-non-functional-requirements/28415
http://www.irma-international.org/chapter/social-network-structures-open-source/29481
http://www.irma-international.org/article/efficient-scheduling-of-jobs-and-allocation-of-resources-in-cloud-computing/307013

