
1179

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 58

DOI: 10.4018/978-1-4666-4301-7.ch058

Modular Game Engine Design

ABSTRACT

The usage of software engineering principles in designing a game engine is discussed in this chapter
using a simple tower defense game implemented using C# and the XNA Framework to illustrate usage of
the engine. Essential functions, such as collision detection, input/output, graphics, object management,
state management, and sound, will be implemented as independent units called managers. Because each
manager is independent from the rest, essential development tasks such as implementing each manager
and isolating bugs are much simpler.

INTRODUCTION: WHAT IS A GAME
ENGINE?

A game engine is a system designed to facilitate
rapid development of video games. A game engine
generally acts as a layer of abstraction between
hardware or low level code and the engine interface
to reduce the amount of time spent designing or
coding a game. Additionally, game engines may
utilize third party libraries to provide desired
functionality, such as physics, sound, and artifi-
cial intelligence, rather than having to “reinvent
the wheel”. There exist many libraries on each

of these topics which can both quickly add new
features to a game engine and reduce the overall
time required for engine development.

“Game Engine” is a generic term and does not
define any specific features which must be included
other than aiding in the game development pro-
cess. However, many game engines include, but
are not limited to, any number of the following
standard features:

•	 2D or 3D rendering
•	 Audio
•	 Physics
•	 Input Detection
•	 Scripting

Aaron Boudreaux
University of Louisiana at Lafayette, USA

Brandon Primeaux
University of Louisiana at Lafayette, USA

1180

Modular Game Engine Design

•	 Entity Management
•	 Networking
•	 Modeling and Animation
•	 Graphical User Interface Management
•	 Particle Systems

In addition to these core features, it is also desir-
able to develop the engine to provide these features
using a component based architecture. Ideally, each
of the previously listed features is implemented as
an individual, independent component. Realisti-
cally, some inter-component dependencies may
be required in order for some libraries to func-
tion correctly, or to prevent duplication of work.
For example, the GUI system requires the input
system in order to detect GUI interactions. While
a GUI library may implement its own basic input
detection, it would be completely unnecessary to
use both the basic GUI library input detection, as
well as a more fully-featured input library which
may support many other input libraries.

Component based systems tend to be more
modular. This allows engine developers to either
swap out one implementation of a module or com-
ponent for another, or provide multiple component
implementations, allowing a game developer to
have a choice of implementation. Additionally,
a game engine may allow a game developer to
either add new components or replace the default
components with their own custom components.
A great example would be a component based
3D rendering system which allows the developer
to choose a target platform such as the Microsoft
Xbox 360, Sony Playstation 3, or Nintendo Wii.
It is even possible to compile the game using
each of these systems to allow game developers
to focus on multiple platforms.

This chapter illustrates the concept of modular
design through actual design and implementation
of a simple game engine. It features many of the
components listed above, including 2D rendering,
audio, input detection, and graphical user interface
management.

BACKGROUND

This section will cover the basics of the XNA
framework and C# before delving into our engine.

C# Keywords and Other
Functionality

The game engine uses several keywords and other
features of C# that may be unfamiliar to those
without experience in the language. A brief over-
view will be provided here. For more information,
please refer to the C# books listed in the additional
reading section at the end of the chapter.

•	 Override: Used to extend or change an
abstract or virtual member of a base class.
The override keyword must be used in the
declaration of the derived class or member
(Override, 2011).

•	 Sealed: The sealed keyword can be ap-
plied to class members, methods, fields,
properties, or events that override a virtual
member of the bass class. Other classes or
members cannot override a sealed object
(Abstract and Sealed Classes and Class
Members, 2011).

•	 Internal: A method or class member that
is declared to be internal is only accessible
to other classes within the same namespace
(internal, 2011).

•	 Delegate: The delegate keyword func-
tions similarly to a function pointer in C or
C++. It is used to specify the signature of
the events which will be thrown by events
specified using this delegate. Methods reg-
istered for the event must also match the
signature of this delegate (i.e., a void meth-
od with a single parameter of type string)
(Delegates Tutorial, 2011).

•	 Event: The event keyword is used to speci-
fy an object which can be used to store a list
of specific methods to be called. An event
must be declared using a delegate type.

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modular-game-engine-design/77753

Related Content

The Design of Power Security Defense System Based on Resource Pool Cloud Computing

Technology
Dang Nan (2020). International Journal of Information System Modeling and Design (pp. 1-11).

www.irma-international.org/article/the-design-of-power-security-defense-system-based-on-resource-pool-cloud-

computing-technology/250310

Virtual Agent as a User Interface for Home Network System
Hiroyasu Horiuchi, Sachio Saiki, Shinsuke Matsumotoand Masahide Namamura (2015). International

Journal of Software Innovation (pp. 13-23).

www.irma-international.org/article/virtual-agent-as-a-user-interface-for-home-network-system/122790

Analysis of the Evolution of Eight VSEs Using the ISO/IEC 29110 to Reinforce Their Agile

Approaches
Mirna Muñoz, Jezreel Mejíaand Claude Y. Laporte (2021). Balancing Agile and Disciplined Engineering and

Management Approaches for IT Services and Software Products (pp. 28-51).

www.irma-international.org/chapter/analysis-of-the-evolution-of-eight-vses-using-the-isoiec-29110-to-reinforce-their-

agile-approaches/259170

Analog Learning Neural Network using Two-Stage Mode by Multiple and Sample Hold Circuits
Masashi Kawaguchi, Naohiro Ishiiand Takashi Jimbo (2014). International Journal of Software Innovation

(pp. 61-72).

www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-

circuits/111450

A Taxonomy Built on Layers of Abstraction for Time and State Vulnerabilities
Horia V. Corcalciuc (2013). International Journal of Secure Software Engineering (pp. 40-66).

www.irma-international.org/article/taxonomy-built-layers-abstraction-time/77916

http://www.igi-global.com/chapter/modular-game-engine-design/77753
http://www.irma-international.org/article/the-design-of-power-security-defense-system-based-on-resource-pool-cloud-computing-technology/250310
http://www.irma-international.org/article/the-design-of-power-security-defense-system-based-on-resource-pool-cloud-computing-technology/250310
http://www.irma-international.org/article/virtual-agent-as-a-user-interface-for-home-network-system/122790
http://www.irma-international.org/chapter/analysis-of-the-evolution-of-eight-vses-using-the-isoiec-29110-to-reinforce-their-agile-approaches/259170
http://www.irma-international.org/chapter/analysis-of-the-evolution-of-eight-vses-using-the-isoiec-29110-to-reinforce-their-agile-approaches/259170
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450
http://www.irma-international.org/article/taxonomy-built-layers-abstraction-time/77916

